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INTRODUCTION

Let (A, 1), (A, 1), (A5, ;) be (any) three Riesz-means, and consider all
functions which are transformed by (A, , ), (A , «,) into functions whose rate
of increasc does not exceed some given orders, e.g., let!

ANX) < V(x), AR < V(). 6

Then the question arises, and the discussion and solution of this question is
the main purpose of this paper, about the existence and determination of the
best possible consequence of (1) for the (};, x3)-transform; in other words
we want to find the “*minimal” ¥V such that

A(x) =5 V), @

is a consequence of (1)2.

Several theorems of this type for special constellations of the means (A, , «,)
are known, and it is customary to divide them into Abelian and Tauaberian
theorems depending on whether (2) follows from one of the assumptions
alone? (like the theorems of consistency) or not (like the convexity theorem).

* The research of the first author was supported in part by the National Science Founda-
tion; the research of the third author was supported in part by D. Borwein’s NRC (Canada)
grant,

1 Throughout this paper we will assume that order functions like V; , ¥, and the sequences
A, are of Jogarithmic-exponential type, and we find it convenient to use the notations
=<, %, =<, =, ~ (see [2]) which are natural in connection with such functions. In what
follows, logarithmic-exponential functions will be called L-functions, and f& L means that
fis an L-function for large values of the argument.

#This problem is of “O-type”. We will also discuss the corresponding ‘‘o-problems”,
and problems of “mixed” typc.

2 We do not exclude the case (A, , «) = (Ay, &)
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But these theorems do not cover all possible constellations, and we shall prove
some new ones {essentially a Tauberian theorem). It turns out that suitable
combinations of two Abelian and one Tauberian theorem always lead from (1)
to the best possible (2), if (roughly speaking) only the A’s and ¥’s are smooth
enough, if the V’s do not decrease or increase too fast, and if the orders are
in [0, 1] (a restriction which can probably be omitted).

SURVEY OF RESULTS

Prior to the discussion of the structure of the Abelian and Tauberian
theorems we give the definition of the functions A,(x) which is used here
(our definition corresponds to «4,“(A(x)) in the notation of [1]).

Suppose that

Ae G0, o), Ael, M0) =0, X(x) >0, Ax)-—» o, (3)
and that
Ae M, ie., AeL,0,r) for every r >> 0,

or
AeS, ie, Alt)= ) a, (1 = 0).

Ogyat

Then we define?*
A7) =[O0 = MY XD A k0 A — A,
i}

and 4 is called summable (X, «) to s if («/A<(x)) A*(x) — s as x — oo, For
functions A € L we will write A{x) == A(x)/A'(x) (A may have subscripts, etc.,
which will also appear with the corresponding /). Since the detailed formu-
lation of our results turns out to be rather complicated, it seems appropriate
to discuss the main aspects in a simplified form, which exhibits more clearly
the various interrelations.

From the viewpoint of summability our first Abelian Theorem leads from
(A1, x;) to stronger methods (A3, «3), i.e., it is of the consistency type
(denoted by C). In that case the limitation order can only increase while the
corresponding Tauberian condition can only become stronger, i.e.,

A3 = Ay, A, = A

3 1°

The remaining Abelian theorems are of the limitation type.

4 At this point we emphasize that in this paper functions 4,¢ are considered only when A
satisfies (3).
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Technically, the latter theorems can be divided into two categories
depending on whether «; << «y or 3 >> «, . Theorems of the first category
will be denoted by L, and theorems of the second category can be obtained
as a combination of theorems L and C, hence we will denote them by LC.
In a simplified form® these theorems can be formulated as follows: Suppose
that 431 <C V3, and that /4, 2> 1, 4; > 1. Then

"

A <Ky M4 4, and AP <A, ©
1

K K. Vl A;l . - Li¢ K;

A/\s < )\33 S 71.; if Ky K and /111 > A33, (L)
3 11 33

, 31

A < as L (mjllL) if kg 2k, and A, <A,5  (LO)

3 All 3

The logical structure of these theorems can be iliustrated as follows. Let the
points on the horizontal axis of a coordinate system ‘“‘correspond” to the
functions A (such that < and < are consistent), and take the vertical axis as
r-axis. Then the means (A, k) “correspond” to points in the plane, and the
Abelian Theorems are indicated by arrows in the following diagram?’

f
! (Ny,Ky)
U s
(hg.k3) € : /
(A, i) ==
///
e B )
DraGram 1.

The broken lines divide the regions of validity of the theorems. The line
dividing C and L may be horizontal (e.g., if A;(x) = x) or vertical (e.g., if
A,(x) = 1). Observe, that in the “region” C we have the same average order
Vi/AQ, and that in the “region” L we have the same limitation order

(VaXg) A,

> The simplifications are essentially the following ones. We consider only functions
A €S, and we replace integrals like fﬁf(t) dt by xf(x).

% Theorem (LC) is obviously a combination of Theorems C and L (use L first to obtain
an estimate of A,’{; , and then apply C to obtain the estimate of LC. All three Abelian
Theorems can be condensed into a single one: A;:; = Aa(Vy/ N1+ A Ags -+ (A,]Az)).

? Relations A4* > A resp. A* <\ 4 are equivalent to A* <{ A* < A8 (for some constants
0 -= o <2 B) resp. A* >= )% for some constant § >> 0 (see, e.g., [2, Theorem 23]). Hence,
in our diagram, larger A’s correspond to smaller A’s. In this diagram we assume that
methods (A, «), (A*, «) with 4> A4* (such methods are equivalent in summability) are
represented by the same point.
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Next, we discuss the Tauberian theorem (denoted by T') in a simplified
form. It improves the conclusion of L whenever A, =< A, . Starting from the
assumption A5! <C ¥ it leads under a Tauberian condition to conclusions
A <AV, 1<V < A/ Ags (the Tauberian condition depends
on V), i.e., in the region A, < Ay, A5 = A, 1y << &y, it interpolates
between the orders of 43 appearing in C and L (and, in particular, for J' <1
it extends the conclusion of C to this region). The Tauberian condition is
A <V, Ay < A, where V, and A, are determined by the following
requirements:

(1) the “L-consequence” of A =< AV AV is A= Vs, and

(i) the “C-consequence”™ Ajl=<C V* of A} < V,. and the *L-
consequence” AL = V** of Aj <V, are equ1valent Le., V¥ = V**,
The following diagram illustrates the situation.

() G T '"'L‘“""”‘ (>‘Z'K1;
SN
T : C
s
Va [
7N i) : L (Ap, K= K3)
DIAGRAM 2.

We calculate the quantities which appear in this description. It follows from
A“3 < AV /X)V by L that Ay << Ve = Xp(VyAp) V(A,/Ayy, and then
= M VXD V(A A (by C), whereas V** = X(V,/Xa) (A, /A<

(by L) It follows from V* = V** that

A = Ay TIATS, 4)
and it follows from (4) and the expression for V, that

2 AKl ~— Vl

o X A7 (5)

Theorem 7 can now be formulated as follows.

Given two Riesz-means (A, , x;), (A3, x3), A; <X Ay, k3 << Ky, and given V
with 1 <¢ V' <{ A1) A%, suppose that A, and V, satisfy (4) and (5). Then
A3 < V1 , A% <X Vy imply A53 =<C A2 ss(Vo /A V. We will show that a suitable
combination of C, L (LC) and T always leads from (1) to the “minimal”
estimate (2) (under the restrictions on A;, V; and «; which we mentioned
earlier). Here, the precise meaning of ““‘minimal’ is the following: V; will be
called a minimal bound for A3 if (2) holds, and if also V; < U for every U
of the property, that (1) implies 45 <C U.
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We are going to discuss now the relations between Theorems C, L, T and
known results. The First and Second Theorem of Consistency (see e.g.,
[1, 5, 6,8]), The Limitation Theorem (see, e.g., [l, Theorem 1.61], [5,
Theorems 21, 22]), The Convexity Theorem of M. Riesz (see, e.g., [I,
Theorem 1.71;9;10]),a theorem of Chandrasekharan and Minakshisundaram,
denoted by C-M ([1, Theorem 2.41], it generalizes earlier results by
Zygmund [11]) and a theorem by Zygmund, which is, in extended form,
Theorem 2.61 of [1].

For k; = «, , Theorem C is a combination of the first and second theorem
of consistency, and for x, < «; it follows from C-M. Theorem L is, for
A3 = A, , the Limitation Theorem, and for A, > A, , it follows from C-M.
(The connections between Theorems C, L and Theorem C-M will be shown
in our later discussion of the Theorem C-M.) Theorem LC generalizes
Theorem 2.61 of [1].

Theorem T7'is new, but some of its consequences are known: The Convexity
Theorem is a combination of Theorems LC (or L, x;, = ;) and T. Its
structure is: For 0 <C ky < k3 << Ky,

ATV, A=V,

. \ lmply A;q Sg V3 _ V;K37K3).f'(K1~K2) VéK1~K3)/(K1vK2)’

and we may assume that V;/Aa = V,/ e < (V,/ a) Axi~2 (otherwise the
theorem is of Abelian nature and follows from C or L).

Lett A, = A, Ay = A, V == (Ma—al, [P /aw) A, = AV ]t
follows from Theorem LC that A <CVy* = A(Vy/Ae)(A/A,)2;  the
assumptions of Theorem T (with V,* in place of V,) are now satisfied, and it
follows from this theorem that A3 = Ap < As(V X))V = V,, ie., the
Convexity Theorem follows.

The following diagram illustrates this proof:

(A <)
T

(A, k) e DN,
Ks //,( 2.K3)

DiaGraM 3.

According to the diagram we understand T as a stronger form of the
Convexity Theorem, where the (A, x,)-hypothesis is replaced by the weaker
(A, , k3)-hypothesis which is even necessary for the conclusion.

Theorem C-M is of the following structure:

8 With regard to the existence of 4, we note the following: If 0 < fe L, jw dtif(t) = oo,
then there is a A satisfying (3) such that A ~ f. In fact, there is F € L such that F ~ f dr/f(t)
(see [3]), and A = eF satisfies 4 ~ f (see [2, Theorem 21)).
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Suppose that w«; << x;, /A, = A5, then

B e 0 (R ()

The logical structure of this theorem and its proof'is indicated by the following
diagram:

- (‘/\1,,(1‘1
L ~
Ay, Ky - Ay, Kg) =, K3)
DIAGRAM 4.

Ay <V implies Ay < Vg == Ap(Vy/A) A7 e (by Theorem L with Ay = Ay);
therefore, as was mentioned before, Theorems Cand L (if xy, << 1, 4; <X Ay)
are consequences of Theorem C-M.

In the discussion of the “Tauberian contents™ of Theorem C-M we may
assume that A% < A% and also, that both terms in V; are of equal order
(increase V; or V, if necessary), i.e., we may assume that F/Aj1 =<
(Vo Xis) (A A3, We now introduce A, through Ay = A51A47%; then
A2 <\ V, and Theorem L (or LC) imply A3 < A33( Vo] AP A A == Vy*,
and Theorem T (with V' = [, V,* in place of V,) shows that A7 <V}, i.e,,
this part of Theorem C-M is a consequence of Theorems L and 7. Accord-
ingly, we may view T as a stronger form of the essential case of Theorem C-M,
where the (A, , «,)-hypothesis is replaced by the weaker (A, . k3)-hypothesis.
Observe that both of these conditions are necessary for the conclusion and
that the (A, ., «,)-hypothesis is the weakest condition of this kind.

In Section 1 of this paper we will give some auxiliary resuits on L-functions.
Section 2 is devoted to the proof of the Abelian and Tauberian theorems.
It turns out that we need three Abelian Theorems, denoted by 4, , 4., 4,,
whose logical structure is indicated by the following diagram:

’,)\4,»‘3\
e
\\)\1,'(1," /\2"0\5/\‘1)
,
|2,
Y
1.)\1,»<3,‘
DIAGRAM 5.

All other Abelian Theorems follow from these special ones in combination
with the Tauberian Theorem 7. The key to Theorems 4, , 4, , A3 and T are
Theoremm 1 (the sharpened Riesz mean-value theorem) and especially



TAUBERIAN THEOREMS 241

Theorem 2 (which describes the influence of V; on parts of A5). In Section 3
we prove Theorems C, L, LC. Combinations of these theorems with
Theorem T (similarly to the preceding discussion of the Convexity Theorem)
lead to Theorems 3 and 4, which form the basis of the main Theorem 35
(Section 4). This theorem solves the problem which was laid out at the
beginning of this introduction. For a complete proof of Theorem 5 we must
construct counterexamples which show that the estimates V; of Theorem 5
are minimal bounds. These counterexamples are also given in Section 4.
We assume in Theorem S that the functions V;, V, do not increase or
decrease too fast. The concluding Section 5 indicates how Theorem 5 changes
when V;, V, increase or decrease more rapidly.

We conclude this introduction with a comment on the “‘o-theorems™ or
“mixed” theorems of Footnote 2. If, for instance, Aj‘l = V7 in (1) 1s replaced
by Afr < ¥, it seems natural to reduce this new case 1o the former by writing
A31(x) < e(x) Vi(x), e(x) — 0, i.e., by replacing ¥V; by ¢V in (1). Unfor-
tunately, the class L does not contain functions which decrease very slowly
(see [2, 4.44]), so that this approach to “o-theorems™ is ruled out. Instead,
we will use the fact that Ay <1, implies | A;i(xﬂ < eVi(x), x = x4(e) for
every constant € > 0, and we will show that this constant € (or a function of it)
will also appear in the corresponding V. Obviously, in doing so we must
control the constants which appear in V; , in other words, we must prove that
our estimates ¥, are uniform in a certain sense. This remark explains why
we formulate some of the following femmas in Section 1 with numerical
constants.

w6

[. AUuxiLIARY RESULTS ON L-FUNCTIONS

The following lemmas contain statements on functions A, A;, and we
assume throughout that A, satisfies (3). By A, we will denote the inverse
function of A; , and we will write X = Ay(3A4(x)).

If functions f1(x), f:(x) are defined for all large x, we will wrltefl(\) L folX)
if /,(x) < fo(x), x = x,, holds for some x, > 0 (and similarly <, >, >, =).

LEMMA 1. Suppose that X satisfies (3), and that A << A, . Then
(dfdr)Aq A < 3G ()/A0). (6)
Proof. We have A\ < A\ = Xy, and it follows (compare [2,

Theorem 21]) that [(AXAy) ! < 2)y, which proves (6) since (A,//A) —
(A)\:zl//\), = (/1)\3/)'/A - )\3///\-
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LemMa 2. Suppose that O < A€ L, and that

0 < 400 = M0 < Xy min (5, -L L) — 3,00 1),

Then,
et < NO/Mx) < e,

If, in addition, A — 0, then

e~ A1) A ()] Ax) Mg (x) < e,
LN N

e—S < 8

RPN GYNE I <

@)

®

€)
(10)

Proof. We first prove (8) (cf. also [2, Theorem 31]). Suppose that A 1°.

Applying the mean-value theorem we find that

— Tog AWAW) = log Au(r) A () — 35— As)

A& A ()

for some ¢ satisfying X =< ¢ << £ < x.

1If A(x)/A5(x) — a > 0, « < oo, then

B PR Y GENG) MO TIAN®
If A(x)/A4(x) — 0 (hence | for large x), then
P ((3) - A o A) Ax)

hence

 MNA )
AT e . S

— As(x) f(x) ) Ag(x) mind, A(€)/44E)) <2 As(x) <2 As(x) _

4.

This proves (8) in this case. If A |, then A = 1/JA 4, and A4 = | 4 1, i.e., this

case follows from the case A 1.

In order to obtain (9) we apply (8) to the function A* == /A;". and (9)
follows if we show that min(3, A/Ay) << | A* /A, . If A* 1, then the
assumption (A*/4,) <<} would imply A* = cA2 (¢ - 0), and in turn

= 1; hence A*/A; = 4. If A*|, then a(x) - A*(A(x)) |; therefore,

(X)) = A¥(x)A5(x) 10, and then A < | AN AF) = | A*|.
Inequality (10) follows from (8) and (9) because A'/A; = A/A*.

¢ 4(J) denotes ultimately increasing (decreasing) in the wider sense.
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Remark. This proof also shows that (8), (9) and (10) remain true (possibly
with new constants) when | A [/, in (7) is replaced by ¢(| 4 |/4;), ¢ > 0.

LEMMA 3. Suppose that 0 < Xe L, and that X > X\3° (resp. A <\ \,°) for
some 4 > 0. Then there exists K > 0 such that

AONX) < K (resp. \O)/Ax) = K)  if <t <x (11)

Proof. 'We have A\4 1 (tesp. A9 |).
LeMMA 4. Suppose that 0 << e L. Then

A< X7 forevery 8§ >0,

A< XY, forsome 4 >0,

| M) A (1) de M) M), if

XA for some 8 >0,
A A7 for every 4 > 0.

ANV Y

Proof. The statements on <, > follow from [3] (note that | AN dt =
f*s””) A(A;(v)) dv) or from [2, Theorem 25], and the remaining statements
follow from Lemma 3 (>>) and from AA° 1 ().

LEMMA 5. Suppose that 0 << X e C[0, ), that A € L, and that « > 0. Then
[ ) = NP WO A dr = 760 [T A = 47 A,
e 0
if A=A forsome 4 >0, (12)
| Q) = 2Oy M@0 Xty d < Cl, 8) M) M),
if A=A forsome 8 > 0. (13)
Proof. Formula (12) can be proven in the following way: If A < A;%,
then (12) is obvious. If A;% <{ A =<{ A9, then it follows from Lemma 3 that
A =< Ax) if ¥ <<t <{ x, and we have
| 0 = M)y A0 Mo s
= x7) | M)A dr 2 [T Qulr) — MY A (@) dr
0 hei-q
=070 ([ A0 A0 di -+ X(x) A)
“0

= XY(x) fo (5 X(1) d.
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The inequality in (12} follows from Lemma 4. In order to prove (13) we may
proceed on similar lines if we observe that the constants in Lemmas 3 and 4
depend on 4, § only. More directly the result follows from

[ 0u) — 2=t A0 M)

A A0 [ 00— A0F T N X dr

LEMMA 6. Suppose that A satisfies (3). and that « > 0. Then

e ; . N
J (A(X) — M)yt X(r) dt = min (,\"’(_x), ((/\3(.\') = A3 ((x)) ) )
! (14)
as x — 00, X =y = X,
Proof. 'The integral is (I/«}{Al{x) — A p)y<. If
Ag(x) — A(y) = ’\3(55)(/1()()//13()5)),
then for suitable & € [y, x]

M) — A0) = AAA5(x)) — MAz(As( 1))

by (10) (note that Ay(x) — Ay y) =< 3Ay(x)). If
A(X) — A0 p) = Ax0)(A(x) (X)),
then
39(%) = A = M) = A0 A0 T Al _2}3((_%

hence, introducing x* = A(A(x) — A/ (x) A(x) = p = X, Mx) — A(x*) =
Ay (x) A N (€A (€) with € € [x*, x]. Therefore, by use of (10)

AGx) = M) — AP = M) — M) = A () Ax) MO E) = M),

Thus, in this case,
(A(X) — A p)r = A<(x).

LEMMA 7. Suppose that X satisfies (3), and that X'(x)|AJ'(x) is monotone for
X = xy . Then

A

AMx) — MD) YY) in relx,y. x] if () T ) (13)

}‘3(-\‘) — A1)



TAUBERIAN THEOREMS 245

If X(x)[A{'(x) 1, then for every o << |,

/\3'(t2 ( A(x) — A(2)
N(t) \ dg(x) — Ay(2)

Proof. Writing y = A(x), 7 = A1), ul(r) = A(Ay(7)), we have

)“ Voin tex, x), x1 == Xy{x). (16)

. ) Ax) — X _
FE) = XROIG), og =3l — MO = D

(and w and its derivatives are L-functions of the variable Ay(7)). Statement (15)
follows immediately from

— 1 1
#) = ) = f pr+w(ly —1)dw = f wwy + (1 — w)) dw
y—- 0 0
and from the monotonicity of . In proving (16) we may assume that
a€ (0, 1) (if « < 0, then (16) follows from (15)), and (16) is true if

o e S
W@ y—r WOF

1
A(y, T) = fo wir -+ wly — 1) dw |,

for every fixed B > 1 and for y(B8) < = 1 y. Writing g(1) = p"(7)/p'(7) we
have

14
A‘r = E;A(.}a T)

Jog(r + w(y — ) @' + w(y — D)1 — w) dw
ﬁ) wilr + wly — 7)) dw

= A(y,7) ( - Bg(f))-

Integrating by parts we find

~l
| gtr -+ w(y — ) (e 4wy — o)1 — w) e
“0

G
y—7 oy

1
— [ p' (7 -+ w(y — 7)) dw,
T Y9

and 4, < 0 if g(r) = /(¥ — 7). Therefore, we must only discuss the case
g(r) << 1/(y — 7), and we distinguish between g | and g 1. In the first case
A, << 0 because

1 +1
[ awt —wydw < @) | e +w(y — =) d,
1] ‘0
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and the case g }, g(7) << 1/{y — 7) remains. In this case (l/g)’ — 0, and in
particular |(1/g) | << 8 == 1 — 1/B for all large = (the bound depends on f).
Then

| 1 IR X
FORe R Ao KL L Ao

hence g(y) < Bg(r), and A4, < 0 follows from

1 +1
fo gr(l —wydw << gy | w(r -+ w(y — 7)) dw.
Y0

2. ABELIAN AND TAUBERIAN THEOREMS

Throughout the paper the index « of Riesz means is in [0, 1]. Suppose that
k > 0,0 < £ < x, that A satisfies (3), and that 4 € M. Then we define

3
Ay(x, €) = JO ) — AN (e) A(r) dr.

In what follows, V, ¥, V, will denote functions which are nonnegative and
belong to C[0, «0) and L. We introduce the condition

VAT VAT > for some €, (0, 1)1 (179

which will be of central importance.
Our Abelian theorems will lead from assumptions | Aj! | <V to
conclusions | 452 | < ¢,V . If V, satisfies (17,), then it follows from

3

3 A:i(x’ X ) eSiiup LA (Ag(x) — Aﬁ(xo))'(rl As(x), (18)
: 0sisayy
thatt
[ A;‘;(x, X))/ Va(x)] — 0 as X — 00, (19)

hence, in order to prove an Abelian theorem of this type we need only show
that | A3(x) — A53(x, X0)| << eo¥5(x), where 0 << ¢, << ¢, .

10 For «; >~ 0 the second condition follows from the first.

1171t is obvious, that (17,) with > in place of > would be sufficient as long as we are
concerned with “O-theorems.” Condition (17;) in its present form is required to obtain
also ‘“‘o-theorems.”
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THEOREM 1 (Riesz mean-value theorem with normalizing factor). Suppose
that 0 < 1y < 1, Ae M. Then

A(x, &) = (A)\ll((—i))») gy forsome £e(0,8. (20)
For a proof see, e.g., [7].

The following statement is a consequence of (20) (discuss the cases &'
near 0 and &' large separately): If V] satisfies (17,), then

- . , A
A5 £ Vi) implies | a5(x, O < ()

) . en

whenever £ <X n < x, 9 = x, (%, independent of £ and x).

THEOREM A, (First Theorem of Consistency). Suppose that (17,) holds, and
that

0 < K1 < K3 \/\\ l, Ae M.
Then
| A<V, implies | AR < KV,
V. (1 if 0 (22)
— )¢ ‘1 N — ld Kl > ’
Vi= X o where K= pie) (&) [k - &) if 1, = O,

Proof® 1f x; > 0, then (from the mean-value theorem for integrals)
A3(x) = X5 (x) A9, §) (23)

and (22) follows from (21) (for y = x).
If «; = 0, then

| A53(x)] < ess sup | A(1) X7(2)) f: (A4x) = A 0) 7 A1) X (2) et

o<t

o P(fl) F(Ks) 1—¢; kgter-1
= Tl 1 %) eiiz;p LA A7) (A (x)
and (22) follows from (17,).

Two arguments will repeatedly be used in the following proofs, and we will
discuss them beforehand.

2 This theorem and its proof is a slight extension of well-known results; we indicate the
proof to explain, e.g., the value of «.
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Suppose that A,(j == 1, 2, 3) satisfy (3). Let

. b Afx) . . .
Jdx) = A4(x) min (”2 > 71‘;((%)’ X AgAg(x) — fUX) (=1L 2).

Then it follows from Lemma 2 that g {x) - A/(x)/A;'(x) satisfies
e < gi)fpdB) < e whenever™  x;* =« s B sl x, x large. (24)

Suppose 0 % xy =5 X, << x, and consider the integral
1= [ 0) = MOy X () A ar) byle) - bty 0 <k <,

where A satisfies (3), A€M, 0 < af, by - b, monotone and nonnegative,
Then a repeated application of the mean-value theorem for integrals shows
that

I = ae) b bEn) | () — MOy N(e) A di,

51 30ty giﬂ s P O € [xl » '\‘2]
and this implies

= 2a(xy) by(€) e by(€,) sup | 43X, €)1 (25)

0<E<e
THEOREM A, . Suppose that (17,) holds, and that

0 <y =<Il, AdeM, Ay 4.

Then'*
Vo= ()

‘ AKl ‘ :;\ - /‘\'\'1 L (,__—_w
i > 3 3
X\ Ay

N 1

implies A} 14

(26)

3
Proof. We may assume that &, =~ 0. The inequality A, <. /A, implies
As = ¢A forsome ¢ > 0, and it follows that (17,) implies (17,) (with x; = «3),

and that A,/A," = (A,/A)(N/A) = . Let,

I = A’;;(x) — A’;;(x, X,

. Al) — Aglr) Y
=LWM*MWHMMMWﬁ%jﬁ% ¢$,

12 pf)/pdB) = (9 @) (@ix) 9:(B))-
Y The special case V5 — A1 is due to Zygmund [i1] and {1, Theorem 2.61].
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(x, sufficiently large). If ¢, |, then it follows from Lemma 7 that
J = ((A(x) — A(0)/(Ax) — A ()Y Y1 /ey(2)) 1 In ¢, and (25) shows that

Ay'(x) \f
A (x)
If @, 1, then (15) and (25) (with @ = 1) show that

o OE) VT N
2 RE) e

and we have Ay(x)/A,(x) — d > 0 in this case. In both cases we have
(for x, sufficiently large)

=2

) sup ] A"‘(\, &).

sup A O &€ ey X
0

M AR

The statement (26) now follows from (21), y = x. (The factor 5 appears in
(26) on account of (19).)

THEOREM A;. Suppose that V, satisfies (17,), that

0 < kg <y < 1, AE€S,

and that'®

Vilx + 1) < eVi(x), A, =« for constants ¢ >0, x > 0.
Then

[A’;i[ < V, implies {A:Z[ < KV, /\“* /1"1 " (27)

for some K, which depends on ¢, k5 and o only.

This is essentially Theorem 1.61 of [1], and we omit its proof (which uses
Lemma 2).

Our next theorem is the essential tool for the proof of the Tauberian
Theorem T. It exhibits the magnitude of A5:(x, ), as far as it is controlled by
V; only, in a certain range of y near x, and it turns out that y == x,* is a
critical choice.

THEOREM 2. Suppose that (17,) holds, and that
0 < xy < iy <1, AeM, Ay < A,

15 Here A is a step function with steps at the integers, and Vy(x + 1) << ¢V(x) guarantees
that ¥, does not increase too much between two integers.
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Then there is a numerical constant K, > 0% such that | 45! | < V, implies

LAY x9S K Yy

=N (ﬁl)

3

(28)

K3

( (Aa(x) — Ao A4°(0) )\:8 dt

if 'V satisfies (175).17

Remark. The following proof will also show that

o Vi .
g 3: V3:A3 A.'l(ll lfAl:A3.
(29)

Proof of Theorem 2. Throughout this proof we will assume that x, and x
are sufficiently large.
We split the integral A3(x, x;*) — A433(x, x,) into two terms:

| A7 < ¥, implies AR, )| <

A R Y Ay ee v

Yo

We have

I = (4 (x) — L)y L TN @) A di = X(R) jj A1) A(t) dt,
(XO g g < )‘C)’

and, by partial integration,
1~x3r= _ ] X ’ ¥ l ! t ’
N L= L (1) A(t) a’t~L (?pi) dt [ (7 A(7) dr.

It follows from (17,) and (22) that

! (f AS(T) A(7) dr | < 2/\}_"‘0) V.(6),
vE
and we find from (6)

1< 257 (M) Algxg Ay‘gg +3 f A'(1) A:((?) dr).

16 The proof will show that we may take K, == 5¢%.
Y, = s ix) [ A"(V1/AG) dr shows that (17;) holds if fm AN (M) dt = oo,
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The ultimate monotonicity of Vy(¢)/Af(t) implies A(X)(V(X)/A(X)) <
2 [o Ay'(V4/X9) dt, and the estimate

1057 [T di 20 T = A0y © 3y 4

of I, follows. If A, == /A, then (l/¢;) = 0, and (29) follows from the
preceeding discussion of /; .
Next, we have (by partial integration)

= 40— A" A AN — MO 0 — M0 T

= v = A T 0 — o o ey a

[0 = A0 - aoy s

[0 — M@V A dr.
It follows from A;(x) — A (%) = A(A,(A4(x))) — A (A(As(x, *))), that
0‘1(—") — /\1(4\”1*))1“'(l = (fi(x) (Pl(f))l_Kls n*<é<x
We have
Ax) = 3A(0(Ay(x)] Ax(x)), (30
and (30) and (24) show that

(M(x) — A ¥ S (%) < 26PN, (x) A (x))eT (3D

()
A short calculation shows that
d
_oaf MO 3(x) As(t)
B xe o) <(1 SR O e /\(t)>+

It follows from Az, = (A,/1,) A, 1 that

¢1(t) 3()’) As(») < :
n0) S S S

640/13/3-4
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and this shows that

— K — - K E@ =
(T =me) =t é) | 3

Furthermore, {-*-} < A7™*1(x)(A3(x) — Ay(2))*~1(1/@y(2)) and it follows from
(6) that

d P
AN

N RO — A S

M) (A it)
AV 1)

A V(1) A0 — M4(0)

We wish to show that f(r) = (A,(1)/A5(6)) A(8) < 4(Ay(x) — Aq(2)), for
X <t < x;*, and we observe that #{x) < 2f{x) < Q(Aj(x) — /\,(t)) by (30).
Hence, we need only discuss the case z/;i and Ag(x) —- Af(1) < (1), say. It
follows from 0 << J(7) = ¢(Ay(7)) | that | " | <2 L, and then (for that r)

1) — ) = P — PA0)) < H0) = M) < 3hl),

hl1) < 2(x) = AA(x) — A1)
Using this result on ¢ we have

A?([) for ¥ <t <

| | < 1M 00— Aoy

1t follows from (31) and (32) that
2] < 265 000 (0 A ACx, x, ) - | A, )

1 A
A0

and it follows from (21) (with = x or - f) that

SIS [y A TR e A D) .

Ky

ILZ(»’432(A§’AK,(21‘*)

TaEOREM T. Suppose that (17,) holds, that

I 0w = a1 ).

0 < wy =< 521 Ae M, A, < A,
and that Ay, V, and V satisfy

Agre o Ay, A A (33)

1 2
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and
Va
X

Kl L/ Ky
Ay ~ (34)

Then there is a numerical constant Ky > 0 such that | A§} | < Vil A"J [ < V.
imply
V

1 I/

l A’\j | < KV, V, = X‘“ + ’ (Ay(x) — A(8))*” TA - /\k

(35)
if 'V, satisfies (17,). If Ay = A, then the integral in (335) may be omitied.
Proof. Let

(note that x;* < x,* by (33)). It follows from (33) that 2V = (A,/A4,)";
therefore, by Theorem 2 (including Remark) we need only discuss /, and 7; .
In what follows, ¢, , ¢ ,..., are numerical constants. Writing

L= ) — My

Ya*

X A(t) A(R) (":\%—};\\—jg—;)‘{r (Ag(x) — Ag(r))*™™ d(tl)

we obtain from (25), (15) and (24) an estimate

T e () — M) g sup | A, ).

0<é<e

We have Ay(x) — A3(x®) = fo{x) = 1A,(x)(As(x)/ A5(x)) (cf. (30)), hence

e

A
1] < e AP e AIK — Gsffpﬂ’AKl(x 3] /\K ,

and the required estimate of J, follows from (33) and (21) (v = x). Prior to
the discussion of I; we note that V, satisfies (17,) (with x, = &) since V;
satisfies (17,). This is a consequence of

. Vil K1 .
ATV, ~ A, —A;I— (_AL) and A > eshy

2
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Writing

Al 1 , . Aa — Ag a1
Q::.kj(AAx)‘“Aﬂoyy-AzU)AU)(Ai§;f~§i3) ¢j;y

we obtain from (23) (@ == 1), (15) and (24) an estimate

1 s ¢y ™(x) sup [ AG(x, €)),

o< sl

and the required estimate of /; follows from (21) (n == x), (34) and (33).
Remarks on Theorem T.

1. If (34) is replaced by (Vy/A) A5t < c(V,/X) A5 for some ¢ = 1,
then (35) holds with ¢K; in place of K .

2. If all the assumptions of Theorem T except /1, > A, are satisfied,
then Theorem A4, may be used to derive from | 43| <V, an estimate
| A5 ] < 17, which can serve as a Tauberian~cond1t10n (case Ay = A;, V,in
place of V,). A short calculation shows that (V,/Xfs) A%t < (V,/X{1) A% holds,
and we have V =<{ (4,/45y=. This remark leads to the following corollary of
Theorem T:

Suppose that the assumptions of Theorem T with the exception of 4, > 4,
are satisfied, and that in addition (17,) holds. Then | 45! | <V, A3 <V,
imply (for a numerical constant K,)

A < Ky,

36)
v (Ve (e [ — e

1

if ¥V, of (36) satisfies (17,).

3. Using (33) and (34) we can express ¥ by the remaining quantities,
and we find

Kglucy

€1
o

A% vy Vo~ )\K‘, ( e
2

o A7)

4. Tt would seem from the discussion of Theorem 7 in the introduction
that only the cases 1 < V =< AY/A3* are of interest, since in the other
cases (35) would follow from | 45! ] <Z V, by Theorems C or L. Basically,
this is the case when 4 € S. But when A ¢ S, «; <7 «; , then Theorems C or L
are no longer valid, and in this case Theorem 7 is also of interest for other
functions V.
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5. Compared with Theorem 7, Theorem C-M restricts itself to the case

A, = A;, and in its proof a term corresponding to I, does not appear.
Thus, the influence of ¥; and V,, is not balanced in a maximal way.

3. COMBINATIONS OF THE ABELIAN AND TAUBERIAN THEOREMS

We wish to use the relations (12) and (13) (A = V,/A%?), and this gives reason
to introduce the conditions

VX > A7 for some 8, > 0, (384)
VX< /\f", for some 4, . (39;)

By combining the results of the previous section we first prove Theorems C, L,
LC.

THEOREM C. Suppose that (17,) and (38,) hold, that A, < A, and that
either

0=Cr; <y <1 Ae M,
or
0 <k, < w, <1, AeS, AP <A,
A, =« Vilx + 1) < eVy(x) (for constants o > 0, ¢ > 0).
Then

A <V, implies | AT <KV, s = XXV /AD),  (40)

where K, depends (at most) on ks, o, ¢, 8y, € .

Proof. We may assume that «; > 0 (use Theorem A, if x; = 0), and we
note that V', then satisfies (17,) because of (38,). If «3 = «;, then we use
Theorem T (A, = A, , V, = V), and (40) follows from V ~ (A,/4,) < |
and (13). This result is the second theorem of consistency, and the case
xy > K, follows from a combination of this second theorem of consistency
and Theorem A4, .

If k3 << xy, then | A5 | <V, implies | A5 | < KAP(Vy/A) A7 by
Theorem A;, and it follows from this estimate and Theorem 4, that
| A <V, = SK XV NOY(A]A5) for A, << A, , and we use this estimate
for 1, = o We now apply Theorem 7 and Remark [ (V ~ (Aj/A8) a1 <
A1) and (40) follows from (35) and (13).
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THEOREM L. Suppose that (17,) and (38,) hold, and that

0w, <, <1, AeS, A zo AP A9, Vix+1) <cV(x)

(e = 0, ¢ -0, constant).
Then

v, Ay
3> 37 g /\Fzgg (41)

o e
1 J

A < V. implies A7 <KV

where K, depends (at most) on ky , «, ¢, 0, .

Proof. We may assume that x, > 0 (use Theorem A, if x3 = 0), and
we note that ¥, then satisfies (17,) because of (38,). If A, <X A,, then (41)
follows from Theorem T in exactly the same way as (40) did (we now have
Vo= A%A% = 1), and (41) follows for A, >> A, from Theorems A4,, A4,
(cf. the proof of Theorem C).

THEOREM LC. Suppose that (17,) holds, and that

0 << ry Sy L 1, AeM, A3</11.

Then

e

3

A <V,

implies | 4} | <KV v, = X Yy (

7787 "
A
where K, depends (at most) on x; , €, .

Proof. We have already pointed out in the introduction, that (42)follows
from a combination of Theorems 4, , A4, .

In Theorems C and I we have used the condition (38,) in order to replace
the integral in (35) by Ag3(Vy/X{). If also (39,) holds, then this is sharp by (12),
and one expects best estimates. On the other hand, if (39,) does not hold,
then we must retain the integral in (35) if we want sharp results. Theorems 4, ,
A, , Ay and T are general enough to furnish the corresponding results. This
remark also applies to the following theorems (where the fact, that no integral
appears in (35) whenever A, = /1, is important in some cases).

1f, on the other hand, ¥;/A%t is rather small and does not satisfy (38,), then
it follows from (12) that the integral in (35) may be replaced by
X (x) [o Ay'(V1/X9) dt, and it is also possible in this case to prove the results
corresponding to (40) and (41).

The following theorems are of Tauberian nature.

THEOREM 3. Suppose that (17,), (17,) and (38,), (38,) hold, and that

0 < wy < oryg <y <1, Ae M.
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Then | Ay | < Vy, | A | < Vyimply | AR | < KV,

)

K3

V“A?AK (1+(A3)

(kg—rg) / (y—rs)

o (/\11 Akl) ( /{/; Agg)(ws)/(Kr@)A;Ka
+ /\gJ (;/’1(11 Ail)xa/n(j\:%)lﬁ@/xl A;K;,, (43)

where Ky depends (at most) on g, 6;, 8, , €, .

Before we turn to the proof we indicate its main idea by the following
diagrams:

Ay, 5
//T B ()“1 #y)
(>\3,K3) - (A, Ky i Treorem 3, A=A4
Cor LC
/ (A &) == (X, %)
()\2]K2) 1 3 AZ 373
DraGgram 6. DiAGRAM 7.

If A, < A, then we move from (X, , x,) to (A, , k,) with an Abelian Theorem
(A, is determined by (33) and (34)), and then we apply Theorem 7. This
Abelian Theorem may be C or LC, and we combine both theorems (for this
case) into

A LRt e (1 +(i) )f 7,

where C > 1 depends (at most) on «y, €, 8. If A, > A, then we use
the precedmg part with 4; == A;in order to obtain an estimate | 45> | <I V¥,

and we move from this estimate to the estimate of 45? by Theorem 4, .

Proof of Theorem 3. We may assume that =3 >0 (for «; == 0 the
third term of (43) is ¥,). Assume first that A, <{ A, . Let

H="L1 g0V g
A‘il "
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and let (cf. footnote 8)

VA, ~ A1V g,

) - . .
(4, = 4, iOH S, A, A,

(i) Ay, ~min(AHY A)  if HZ=1, A, 5 A,.

In case (i) we have Ay A, = L, As™ < 2457H, and in case (i) we have
AYA, =2, Ap 22490,
In case (1) we have

s e (4)

2’ 2 2

cte

“ V.
6C 2 AH = 6C 5

/3CA /11 2Az }ql‘/‘lll

and (36) (V = Apdy<sAp ™ Hiw ta—) or V = (A,/A,)+) and (13) yield
the first and second term of (43).
In case (it) we have
o w0 - V., ~ .
w2 A L3C-2 A% L6 i ADH = 6C /1“1
Xp o 3¢ X Az A

and (36) and (13) yield the first and third term of (43).

If A, > A, , then it follows from the part of Theorem 3 which has already
been proven that | 45| < V;*, where Vy* is ¥y of (43) with A3 = 4, .
We apply Theorem 4, (note that V,;* satisfies (17,)) and obtain | 452 | <
SNV ¥ A5 (A,/ A5, and this proves (43).

THEOREM 4. Suppose that (17;), (17,) and (38,), (38,) hold, and that

O<K3<K1 <]’ K3<K2<13 AES’ A2>a’ Vz(le) CV2(x)
(o« > 0, ¢ > 0, constant).

Then | 4| 5 Vo, | A5z | £ Vyimply | A% £ KV,

Vo = X (1 + (—ﬁ:ﬂ) (2 > 43) 4,
+ )\;3 (;/’{11 A;I)KS/KI( }I\gi )I—Ka/:(l A;x3, (44)

where K, depends (at most) on k3, o, ¢, 5.
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The idea of the proof is in principle the same as in Theorem 3, and it is
(for A, < A,) indicated in the following diagram:

(A, &)

Di1aGraM 8.

We combine the Abelian Theorems C and L (for this case) into

A< DR (1

2/\;( A’Q)*~

Ve,

where D > 1 depends (at most) on 3, o, ¢, 8, .

Proof of Theorem 4. We may assume that «; > 0. Assume first that
Ay £ Ay, and let H* = HAYD%) (a5 in the proof of Theorem 3). Let

6 Ape ~ Aoyl jf e 2,
A, =4,, it H* =21, Ap <Ay,

(i) /f;‘a ~ min(Ag2H*K3/K1, A5 if H* =1, A:s = A;zl

(Cf. footnote (8) ; because of Theorem L we may assume A, < A, if H* < 1.)
In case (i) we have A/ Ay = 3, Ag—s L 245"~ * and in case (i)
we have A/ <2, Ay < 242H*". We proceed as in the proof
of Theorem 3. In case (i) we have

T = D A2 (1 4E)

i
[
L) fa-l

V2 q K1—Kg Axa 2 23 _ 1 I3
D Ay 6D~—/11H 6DT/I1,

and in case (i) we have

172/1~“1<3Di/3/1~"1'6D ZAKIH—6D 1/1“1
Xeo ©2 Aee 2

03
AZZ 1

and (36) and (13) yield (44). The case A, > A, follows from this result as
in the proof of Theorem 3.
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4. THE MAIN THEOREM
In order to simplify the formulas in Theorem 5, we introduce some

abbreviations.
Denoting by i, J, i +* j, the subscripts 1, 2, we define:

Vi Ky . ] K,

Ci A’:z A:} , Lf = A:T Ai .
Vi A{ i Ky . v 7 Ky

LCZ- = )\:1 (—71?) A‘i R TCLl = ‘;\El* Ai R

Kyil — (Li)()(;r'l())/(Kifl(j)(Lj)(Ki*'Ka)/(Ki'fh‘])‘ O :\ Kj (\; K3 <Ky &,\ l,
Ki' = (LC)S"™i(Cyyi s, 0 = rg < xy s L

A, = (C, + L, - LC) N

i 3

T!=(C,  TCL, = K,"+ K" A,
TV = (C,+ TCL, + L+ KI) A

In Theorem 5 only 4;, T,', T!' appear, and these quantities are built from
C;,L;, LC;, TCL,. When muitiplied by A;*s, the terms C, , L, , LC, are the
Vy's of Theorems C, L and LC, and A, is the corresponding V5 in the combi-
nation of all Abelian theorems (see footnote 6). The expression TCL A
results when Theorem C, extended by Theorem T to A, = A, (see the
introduction), is applied and then followed by Theorem L (similarly to LC,).
The expressions K, K" are “convex” combinations of L’s or LC’s and C’s.

THEOREM 5. Suppose that (17,), (17,), (38,). (38,) hold, that
Vilx + 1) =< Vi(x), Vox -~ Dy xVyx), Ay =1, Ay =1, A,>=1,

and that A € M. Then A7 < Vi, Ay < Vyimply A% <V, where

A

V3 = min(A] ] Az)s [f 0 2 Ky : Ky, 0 = Ko <\\‘ Kg
Vs = min(4; , 7)), i 0 Tk kg < el L

If, in addition, A € S, then

Vy = min(A4, , 4y, T}, if 0 <k kg kg

Vo= min(A, , Ay, Ti5 T3, if 0 <ry - xg <1, Ky << Ky << 1.
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These functions V, are minimal bounds whenever (39,), (39,) holds. Let the
dependency of the function Vy = Vy(x) upon V1 = Vl(x), Vy = Vi(x) be
indicated by Vy = V3[Vy, Vo). If VileVy, Vo] < e Vi[Vy, Vsl holds for
0 << e << 1| with fixed v, , > 0, then

A’;i <V, A:z =V, imply A;;‘ <V,.
Similarly, if Vo[Vy, €V,y] << €2 Vy[Vy, Vs, then
A;i <V, AAZ <V, imply A;Z < V,.

Theorems C, L, LC, 3 and 4 show that the estimates A}3 <C V5 of Theorem 5
are true, and the statements concerning < also follow from these theorems.
It remains only to show that Theorem 5 gives minimal bounds, and the rest
of this section is devoted to this proof.

Let ¥, be one of the functions which appear in Theorem 5, and suppose that
U(x) is nonnegative on (0, o), and that V5 <& U. Then V; is minimal, if we
can find 4 € M or 4 € S such that A} < Vy, A52 <XV, and 45 K U. In the
following we will first give the generdl construction of such A’ s, and then
we will apply it to the individual functions V.

If V,<K U, then we can find a sequence 0 < x,” 1 oo such that
Ulx,NVyx,) — 0. In view of (17;) there is a subsequence {x,} of {x,’}
such that

V) N, ) < 3V ) A, (45)
Mxas) < a0, 0= 12,3, (46)

Let 0 < f(x) < 3(x). /€ L, g4(x) = Vi(x) max(A;(x), (f () (x)/A3" (%)),
g’(X) = min(gl(x), gz(x))a Z(X) — /\3(/\3()() ‘_f(x))’ Zp = Z('xn)-

Lemma 8. Suppose that (17,), (17,) hold, that 0 < k, <1, (v = 1,2, 3)

and that

g <<glt) if zx) <t < x (47)
Let
A(t) sg(vn) UF Zn < ! < Xn

otherwise's,

Then A31(x) <X Vi(x), A3x(x) < Vi(x), 433(x,) 2 g(xn) f*5(x,,).

1 We have X, < A(3As(x0) < X(As(xn) — f(xa)) by (46), i = 3.
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Proof. The statement on Aj5» follows for k3 > 0 (k3 = 0 is trivial) from
A3(x,) = g(x,) ] T — M)A () di < 8(xn) f(x0).

Letibe 1 or 2, and let first z, <{ x < x,, . It follows from Lemma 3 that

f=f0, iz <k (“3)
and it follows from (46) and x > z, > X, that
Ai(xn—l) < AdXn ) < l_

Adx) Y (/\ (]/\3(’("))) 27

in particular
Adx) = Alx, 1) X Adx). (49

If x, = 0, then A‘,{Z‘('x) = V{x) by (47), hence we may assume that «, > 0.
We have, by Lemma 6, (10), and (49),

Aﬂﬂ<ﬁ¥uMMm—&mw4Mmm

£ T IO~ M A i

L

= ge) min (X9, ((£00) — ) — Aglx,)) - fﬁﬂ

o)

£ O Y g min (M6, £5) 4

gmMMWwUHAQ))

J{ /\K,—l(x) an g(\" ) mm (/\K (X) (f( ) A EY ;) ) /\}—Ki(xl.)'

It follows from (47), (48) and the definition of g that

n—1

%m<mwmﬁm2mmwwﬁ
v=1

and A§: =< V; follows from (17;) and (45).
Next, let x,,, < x < z,; and «; > 0. It follows from Theorem 1 and

from the definition of A4 that
Aj(x) = Ay, x, ) = X (x) Ay ‘(&) NT9E), 0§ <x,_,.
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If z, < & < x, for some v << n — |, then Af(x) < Vi(x) follows from
(17;) and the previous part of the proof.
If x, ; < &, < z, for some v <{ n — 1, then

AVE) = AE, x, ) = XTNE) ATEINTUE), & < x,
ie.,
AVx) = AN AEDATE), € <,

and we proceed as before (with &, in place of &;). After at most » steps we
obtain Aji(x) < Vi(x) (observe (17;)).

This prbof also shows that in case f(x) > Ay'(x), in which x, — z, > I,
the definition of 4 can be changed (slightly) to ensure 4 €S by using
[x,] + 1, [z,] instead of x,, , z,, . In case [ (x,) =< Ay(x,,) — Ag(x,, — 1) =< Ay'(x,,)
we replace x, by [x,] + 1 and z, by [x,] — 1, and change (46) to

1, ¢ [x, I . ,
Ad[xpq] + D < 3 A; (E—gi—“), i=1,2,3. (50)

Thus, if f(x) > A;'(x) Lemma 8 remains true with 4 € S.

In order to apply the construction to the individual V3’s of Theorem 5 we
must find for each V; a function fsuch that g(x,) f<(x,) = Vi(x,). If fand g
satisfy the requirements of Lemma 8, then A =<C ¥y, AR <XV, but

A::(xn) > Vs('xn) > U(xn)'

We choose f according to the leading term occurring in V5 (i.e., C, LC, L,
K, K. In this context we observe that TCL need not be used since it never
is the only leading term. In order to facilitate the calculations we split these
four cases into eight cases as follows (i, /, { = j are 1 and 2):

L Vo= C<C,, A,=<d4,, A,<A4,;
2 VARG <LC, A, <A, < A4;;

. VAS=LC<C, A <A,<A4,;

4. VA= LC, < LC, A, <4, A,<A4,;

5. VA L < L,
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6. VA=K <A, < AHM < A4,, AH=<A

3

/1';;"‘14,' )
"

VA =KL L= AHY S A = 1,2, 3);
8. VN K AH{ <1 and notcase “A€S.”

(Compare cases 6, 7 and 8 with the proof of Theorem 3.)

Our claim is that every individual case of Theorem 5 is contained in at
least one of these eight cases. In the simplest case of Theorem 3, viz.
0 < wy < Ky, 0 iy << iy <C 1, we find that V0. is given by C; or LC;
and that only the cases 1, 2 resp. 3, 4 are possible. The discussion of all other
cases is rather lengthy, but represents no difficulty and is, therefore, omitted.

If

F(x) = $A4(x), in cases 1, 2, 3, 4,
F(x) = KAy(x), in case 5,

f(x) = K/le;’/K“)\g’(x), in case 6,

f(x) = K/le}"("f’“j)/\:i’(x), in cases 7 and 8,

where K in each case is chosen such that f(x) =l 3A;(x) (observe that A, = 1),
then the relation involving V, in cases 1-8 is satisfied, and it only remains to
show that (47) holds. This can be done as follows.

Observe first that g = g, for i = | or 2. Next, observe that

VADIX(E) < V(x)/X(x), (50)
by (381), (39i) and Lemma 3. Also (by Lemma 3)

A,(x) y /ilz(t)
71‘3@ A3(-)‘) N A3(t) Afi(t)a (52)

since (A;(x)/A(x)) Ay(x) = A,%(x). This shows that (47) holds when f(x) ==
I000). If £ = KA/(x), then

. Ay (/XX e
F(x) = KAy(x) < Ay(x) min (;c L_(/i)r/i‘)—(*—)’) R

19 Observe that 4, 2= 1, and this implies Ay/A; = Ay/A5"
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It follows from Lemma 2 (A = A;) and the Remark after Lemma 2 that
AJ (D) = A (x) 1f 0 << M) — A(8) < f(x), e, z(x) <<t < x. This shows
that (47) holds when f = K}y'(x).
If f(x) = KA;H*A)(x), then g =< V,;/X{, and (47) follows from (51).
Finally, if f = KA;HY® 92, then f(x) < Ayf(x) min(, o(A,(x)[A5(x))),
v = 1, 2, 3. We have

(V) (@) Aoy \
f)y= (Vj(t)/)\;j(t) (A1) Aj(,))x,,) = f(x)

by Lemma 2, (9) and (51). Hence, (47) holds in all cases.

5. CONCLUDING REMARKS

If (38;) does not hold, i.e., if V;/A{ is rather small, then the discussion
after Theorem LC indicates how to modify the definition of V; so that
Theorem 5 remains true. The essential point is to treat the integral in (35)
correctly, if it occurs at all. Furthermore, an analysis of Theorem 2 shows
that the integral in (28) may not be optimal if A; ~ A, (due to the fact that
Lemma 1 is not sharp in the corresponding case). So one should avoid
A, ~ Ay, unless A, = A, (v == 1, 2). If that is done our modified estimates
remain minimal (assume (39;)). The corresponding ‘“‘counterexamples” can
be obtained by allowing larger f (near A;) or by considering for 4 functions
which vanish near oo or behave like V,; /A%,

If (39;) does not hold, i.e., if ¥, increases rather rapidly, then Theorem A4, ,
for instance, gives no longer a minimal bound. This follows from the following
result. (In this case A; == A;.)

THEOREM A;*. Suppose that V, > M4 for every 4 > 0, and that
0 <y <y £ 1.
Then Ay =V, implies Ap < Vy = AV NV AV Yy If Ay = 1,
Vi(x) =< Vi(x + 1), then this is a minimal estimate.
[n order to prove this, the integral Aj» is split into two parts:

A%, B+ [T ) — MO N Ay de = 1,

Y

Vi(x)

/\1(32) = /\1(,\’) — AW_(\_’)_

A (x).
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Si
n
m

milarly as in the proof of Theorem 2 one shows that [, = V, (by partial
tegration) and /7, =< V; (by the mean value theorem for integrals). The
inimality can be obtained from Lemma 8. There are more changes in the

other parts of Theorem 5 if (39%;) does not hold.

10.
11,
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