The Tauberian Theorems which Interrelate Different Riesz Means

W. Jurkat, W. Kratz, and A. Peyerimhoff*
Department of Mathematics, Syracuse University, Syracuse, New York, and Abteilung für Mathematik I, Universität Ulm, 79 Ulm, Oberer Eselsberg, West Germany
Communicated by P. L. Butzer
DEDICATED TO PROFESSOR G. G. LORENTZ ON THE OCCASION
OF HIS SIXTY-FIFTH BIRTHDAY

Introduction

Let $\left(\lambda_{1}, \kappa_{1}\right),\left(\lambda_{2}, \kappa_{2}\right),\left(\lambda_{3}, \kappa_{3}\right)$ be (any) three Riesz-means, and consider all functions which are transformed by $\left(\lambda_{1}, \kappa_{1}\right),\left(\lambda_{2}, \kappa_{2}\right)$ into functions whose rate of increase does not excced some given orders, e.g., let ${ }^{1}$

$$
\begin{equation*}
A_{\lambda_{1}}^{\kappa_{1}}(x) \leqslant V_{1}(x), \quad A_{\lambda_{2}}^{\kappa_{2}}(x) \leqslant V_{2}(x) . \tag{1}
\end{equation*}
$$

Then the question arises, and the discussion and solution of this question is the main purpose of this paper, about the existence and determination of the best possible consequence of (1) for the (λ_{3}, κ_{3})-transform; in other words we want to find the "minimal" V_{3} such that

$$
\begin{equation*}
A_{\lambda_{3}}^{\kappa_{3}}(x) \leqslant V_{3}(x), \tag{2}
\end{equation*}
$$

is a consequence of $(1)^{2}$.
Several theorems of this type for special constellations of the means $\left(\lambda_{i}, \kappa_{i}\right)$ are known, and it is customary to divide them into Abelian and Tauberian theorems depending on whether (2) follows from one of the assumptions alone ${ }^{3}$ (like the theorems of consistency) or not (like the convexity theorem).

[^0]But these theorems do not cover all possible constellations, and we shall prove some new ones (essentially a Tauberian theorem). It turns out that suitable combinations of two Abelian and one Tauberian theorem always lead from (1) to the best possible (2), if (roughly speaking) only the λ 's and V 's are smooth enough, if the V 's do not decrease or increase too fast, and if the orders are in $[0,1]$ (a restriction which can probably be omitted).

Survey of Results

Prior to the discussion of the structure of the Abelian and Tauberian theorems we give the definition of the functions $A_{\lambda}{ }^{\kappa}(x)$ which is used here (our definition corresponds to $\kappa A_{\lambda}^{\kappa}(\lambda(x))$ in the notation of [1]).

Suppose that

$$
\begin{equation*}
\lambda \in C_{1}[0, \infty), \quad \lambda \in L, \quad \lambda(0)=0, \quad \lambda^{\prime}(x)>0, \quad \lambda(x) \rightarrow \infty, \tag{3}
\end{equation*}
$$

and that

$$
A \in M, \quad \text { i.e., } \quad A \in L_{\infty}(0, r) \quad \text { for every } \quad r>0,
$$

or

$$
A \in S, \quad \text { i.e., } \quad A(t)=\sum_{0 \leqslant v<t} a_{v} \quad(t \geqslant 0) .
$$

Then we define ${ }^{4}$

$$
A_{\lambda}^{\kappa}(x)=\int_{0}^{x}(\lambda(x)-\lambda(t))^{\kappa-1} \lambda^{\prime}(t) A(t) d t, \quad \kappa>0 ; \quad A_{\lambda}{ }^{\ominus}(x)=A(x),
$$

and A is called summable (λ, κ) to s if $\left(\kappa / \lambda^{\kappa}(x)\right) A_{\lambda}^{\kappa}(x) \rightarrow s$ as $x \rightarrow \infty$. For functions $\lambda \in L$ we will write $\Lambda(x)=\lambda(x) / \lambda^{\prime}(x)$ (λ may have subscripts, etc., which will also appear with the corresponding A). Since the detailed formulation of our results turns out to be rather complicated, it seems appropriate to discuss the main aspects in a simplified form, which exhibits more clearly the various interrelations.

From the viewpoint of summability our first Abelian Theorem leads from $\left(\lambda_{1}, \kappa_{1}\right)$ to stronger methods $\left(\lambda_{3}, \kappa_{3}\right)$, i.e., it is of the consistency type (denoted by C). In that case the limitation order can only increase while the corresponding Tauberian condition can only become stronger, i.e.,

$$
\Lambda_{3}^{\kappa_{3}} \geqslant \Lambda_{1}^{\kappa_{1}}, \quad \Lambda_{3} \geqslant \Lambda_{1} .
$$

The remaining Abelian theorems are of the limitation type.

[^1]Technically, the latter theorems can be divided into two categories depending on whether $\kappa_{3} \leqslant \kappa_{1}$ or $\kappa_{3}>\kappa_{1}$. Theorems of the first category will be denoted by L, and theorems of the second category can be obtained as a combination of theorems L and C, hence we will denote them by $L C$. In a simplified form ${ }^{5}$ these theorems can be formulated as follows: Suppose that $A_{\lambda_{1}}^{\kappa_{1}} \approx V_{1}$, and that $\Lambda_{1} \geqslant 1, A_{3} \geqslant 1$. Then

$$
\begin{align*}
& A_{\lambda_{3}}^{\kappa_{3}} \leqslant \lambda_{3}^{\kappa_{3}} \frac{V_{1}}{\lambda_{1}^{\kappa_{1}}} \text { if } \Lambda_{3} \geqslant \Lambda_{1} \quad \text { and } \quad \Lambda_{1}^{\kappa_{1}} \leqslant \Lambda_{3}^{\kappa_{3}} \tag{C}\\
& A_{\lambda_{3}}^{\kappa_{3}} \leqslant \lambda_{3}^{\kappa_{3}} \frac{V_{1}}{\lambda_{1}^{\kappa_{1}}} \frac{\Lambda_{1}^{\kappa_{1}}}{\Lambda_{3}^{\kappa_{3}}} \text { if } \kappa_{3} \leqslant \kappa_{1} \quad \text { and } \quad \Lambda_{1}^{\kappa_{1}} \geqslant \Lambda_{3}^{\kappa_{3}}, \tag{L}\\
& A_{\lambda_{3}}^{\kappa_{3}} \leqslant \lambda_{3}^{\kappa_{3}} \frac{V_{1}}{\lambda_{1}^{\kappa_{1}}}\left(\frac{\Lambda_{1}}{\Lambda_{3}}\right)^{\kappa_{1}} \text { if } \kappa_{3} \geqslant \kappa_{1} \quad \text { and } \quad \Lambda_{3} \leqslant \Lambda_{1} \cdot{ }^{6} \tag{LC}
\end{align*}
$$

The logical structure of these theorems can be illustrated as follows. Let the points on the horizontal axis of a coordinate system "correspond" to the functions λ (such that $<$ and $<$ are consistent), and take the vertical axis as κ-axis. Then the means (λ, κ) "correspond" to points in the plane, and the Abelian Theorems are indicated by arrows in the following diagram ${ }^{7}$

Diagram 1.
The broken lines divide the regions of validity of the theorems. The line dividing C and L may be horizontal (e.g., if $\Lambda_{1}(x)=x$) or vertical (e.g., if $\Lambda_{1}(x)=1$). Observe, that in the "region" C we have the same average order $V_{1} / \lambda_{1}^{\kappa_{1}}$, and that in the "region" L we have the same limitation order $\left(V_{1} / \lambda_{1}^{\kappa_{1}}\right) \Lambda_{1}^{\kappa_{1}}$.
${ }^{5}$ The simplifications are essentially the following ones. We consider only functions $A \in S$, and we replace integrals like $\int_{0}^{x} f(t) d t$ by $x f(x)$.
${ }^{6}$ Theorem ($L C$) is obviously a combination of Theorems C and L (use L first to obtain an estimate of $A_{\lambda_{3}}^{\kappa_{1}}$, and then apply C to obtain the estimate of $L C$. All three Abelian Theorems can be condensed into a single one: $A_{\lambda_{3}}^{\kappa_{3}} \leqslant \lambda_{3}^{\kappa_{3}}\left(V_{1} / \lambda_{1}^{\kappa_{1}}\right)\left(1+\Lambda_{1}^{\kappa_{1} /} / \Lambda_{3}^{\kappa_{3}}+\left(\Lambda_{1} / \Lambda_{3}\right)^{\kappa_{1}}\right)$.
${ }^{7}$ Relations $\Lambda^{*} \asymp A$ resp. $\Lambda^{*} \leqslant \Lambda$ are equivalent to $\lambda^{\alpha} \leqslant \lambda^{*} \leqslant \lambda^{\beta}$ (for some constants $0<\alpha<\beta$) resp. $\lambda^{*} \geqslant \lambda^{\delta}$ for some constant $\delta>0$ (see, e.g., [2, Theorem 23]). Hence, in our diagram, larger λ 's correspond to smaller A 's. In this diagram we assume that methods $(\lambda, \kappa),\left(\lambda^{*}, \kappa\right)$ with $\Lambda \asymp \Lambda^{*}$ (such methods are equivalent in summability) are represented by the same point.

Next, we discuss the Tauberian theorem (denoted by T) in a simplified form. It improves the conclusion of L whenever $\Lambda_{1} \leqslant \Lambda_{3}$. Starting from the assumption $A_{\lambda_{1}}^{\kappa_{1}} \leqslant V_{1}$ it leads under a Tauberian condition to conclusions $A_{\lambda_{3}}^{\kappa_{3}} \leqslant \lambda_{3}^{\kappa_{3}}\left(V_{1} / \lambda_{1}^{\kappa_{1}}\right) V, 1 \leqslant V \leqslant \Lambda_{1}^{\kappa_{1}} / \Lambda_{3}^{\kappa_{3}}$ (the Tauberian condition depends on V), i.e., in the region $\Lambda_{1} \leqslant \Lambda_{3}, \Lambda_{1}^{\kappa_{1}} \geqslant \Lambda_{3}^{\kappa_{3}}, \kappa_{3}<\kappa_{1}$, it interpolates between the orders of $A_{\lambda_{3}}^{\kappa_{3}}$ appearing in C and L (and, in particular, for $V \asymp 1$ it extends the conclusion of C to this region). The Tauberian condition is $A_{\lambda_{2}}^{\kappa_{3}} \leqslant V_{2}, A_{2} \leqslant A_{1}$ where V_{2} and λ_{2} are determined by the following requirements:
(i) the " L-consequence" of $A_{\lambda_{3}}^{\kappa_{3}} \leqslant \lambda_{3}^{\kappa_{3}}\left(V_{1} / \lambda_{1}^{\kappa_{1}}\right) V$ is $A_{\lambda_{2}}^{\kappa_{3}} \leqslant V_{2}$, and
(ii) the " C-consequence" $A_{\lambda_{2}}^{\kappa_{1}} \leqslant V^{*}$ of $A_{\lambda_{2}}^{\kappa_{3}} \leqslant V_{2}$, and the " L consequence" $A_{\lambda_{2}}^{\kappa_{1}} \leqslant V^{* *}$ of $A_{\lambda_{1}}^{\kappa_{1}} \leqslant V_{1}$ are equivalent, i.e., $V^{*} \asymp V^{* *}$. The following diagram illustrates the situation.

Diagram 2.

We calculate the quantities which appear in this description. It follows from $A_{\lambda_{3}}^{\kappa_{3}} \leqslant \lambda_{3}^{\kappa_{3}}\left(V_{1} / \lambda_{1}^{\kappa_{1}}\right) V$ by L that $A_{\lambda_{2}}^{\kappa_{3}} \leqslant V_{2}=\lambda_{2}^{\kappa_{3}}\left(V_{1} / \lambda_{1}^{\kappa_{1}}\right) V\left(\Lambda_{3} / A_{2}\right)^{\kappa_{3}}$, and then $V^{*}=\lambda_{2}^{\kappa_{1}}\left(V_{1} / \lambda_{1}^{\kappa_{1}}\right) V\left(\Lambda_{3} / \Lambda_{2}\right)^{\kappa_{3}}($ by $C)$, whereas $V^{* *}==\lambda_{2}^{\kappa_{1}}\left(V_{1} / \lambda_{1}^{\kappa_{1}}\right)\left(\Lambda_{1} / \Lambda_{2}\right)^{\kappa_{1}}$ (by L). It follows from $V^{*} \asymp V^{* *}$ that

$$
\begin{equation*}
\Lambda_{2}^{\kappa_{1}-\kappa_{3}} \asymp \Lambda_{1}^{\kappa_{1}} V^{-1} \Lambda_{3}^{-\kappa_{3}} \tag{4}
\end{equation*}
$$

and it follows from (4) and the expression for V_{2} that

$$
\begin{equation*}
\frac{V_{2}}{\lambda_{2}^{\kappa_{3}}} \Lambda_{2}^{\kappa_{1}} \asymp \frac{V_{1}}{\lambda_{1}^{\kappa_{1}}} \Lambda_{1}^{\kappa_{1}} . \tag{5}
\end{equation*}
$$

Theorem T can now be formulated as follows.
Given two Riesz-means $\left(\lambda_{1}, \kappa_{1}\right),\left(\lambda_{3}, \kappa_{3}\right), \Lambda_{1} \leqslant \Lambda_{3}, \kappa_{3}<\kappa_{1}$, and given V with $1 \leqslant V \leqslant \Lambda_{1}^{\kappa_{1}} / \Lambda_{3}^{\kappa_{3}}$, suppose that λ_{2} and V_{2} satisfy (4) and (5). Then $A_{\lambda_{1}}^{\kappa_{1}} \leqslant V_{1}, A_{\lambda_{2}}^{\kappa_{3}} \leqslant V_{2}$ imply $A_{\lambda_{3}}^{\kappa_{3}} \leqslant \lambda_{3}^{\kappa_{3}}\left(V_{1} / \lambda_{1}^{\kappa_{1}}\right) V$. We will show that a suitable combination of $C, L(L C)$ and T always leads from (1) to the "minimal" estimate (2) (under the restrictions on λ_{i}, V_{i} and κ_{i} which we mentioned earlier). Here, the precise meaning of "minimal" is the following: V_{3} will be called a minimal bound for $A_{\lambda_{3}}^{\kappa_{3}}$ if (2) holds, and if also $V_{3} \leqslant U$ for every U of the property, that (1) implies $A_{\lambda_{3}}^{\kappa_{3}} \leqslant U$.

We are going to discuss now the relations between Theorems C, L, T and known results. The First and Second Theorem of Consistency (see e.g., [1, 5, 6, 8]), The Limitation Theorem (see, e.g., [1, Theorem 1.61], [5, Theorems 21, 22]), The Convexity Theorem of M. Riesz (see, e.g., [1, Theorem $1.71 ; 9 ; 10]$), a theorem of Chandrasekharan and Minakshisundaram, denoted by $C-M$ ([1, Theorem 2.41], it generalizes earlier results by Zygmund [11]) and a theorem by Zygmund, which is, in extended form, Theorem 2.61 of [1].
For $\kappa_{3} \geqslant \kappa_{1}$, Theorem C is a combination of the first and second theorem of consistency, and for $\kappa_{3}<\kappa_{1}$ it follows from $C-M$. Theorem L is, for $\lambda_{3}=\lambda_{1}$, the Limitation Theorem, and for $\Lambda_{3} \geqslant \Lambda_{1}$, it follows from $C-M$. (The connections between Theorems C, L and Theorem $C-M$ will be shown in our later discussion of the Theorem $C-M$.) Theorem $L C$ generalizes Theorem 2.61 of [1].

Theorem T is new, but some of its consequences are known: The Convexity Theorem is a combination of Theorems $L C$ (or $L, \kappa_{3}=\kappa_{1}$) and T. Its structure is: For $0 \leqslant \kappa_{2}<\kappa_{3}<\kappa_{1}$,

$$
A_{\lambda}^{\kappa_{1}} \leqslant V_{1}, A_{\lambda}^{\kappa_{2}} \leqslant V_{2} \text { imply } A_{\lambda}^{\kappa_{3}} \leqslant V_{3}=V_{1}^{\left(\kappa_{3}-\kappa_{2}\right) /\left(\kappa_{1}-\kappa_{2}\right)} V_{2}^{\left(\kappa_{1}-\kappa_{3}\right) /\left(\kappa_{1}-\kappa_{2}\right)},
$$

and we may assume that $V_{1} / \lambda^{\kappa_{1}} \leqslant V_{2} / \lambda^{\kappa_{2}} \leqslant\left(V_{1} / \lambda^{\kappa_{1}}\right) \Lambda^{\kappa_{1}-\kappa_{2}}$ (otherwise the theorem is of Abelian nature and follows from C or L).
$\operatorname{Let}^{8} \lambda_{1}=\lambda, \lambda_{3}=\lambda, \quad V=\left(\lambda^{\kappa_{1}-\kappa_{2}} V_{2} / V_{1}\right)^{\left(\kappa_{1}-\kappa_{3}\right) /\left(\kappa_{1}-\kappa_{2}\right)}, \Lambda_{2} \asymp \Lambda^{1\left(\mu_{3}-\kappa_{1}\right)}$. It follows from Theorem $L C$ that $A_{\lambda_{2}}^{\kappa_{3}} \leqslant V_{2}{ }^{*}=\lambda_{2}^{\kappa_{3}}\left(V_{2} / \lambda^{\kappa_{2}}\right)\left(\Lambda \mid \Lambda_{2}\right)^{\alpha_{2}}$; the assumptions of Theorem T (with $V_{2}{ }^{*}$ in place of V_{2}) are now satisfied, and it follows from this theorem that $A_{\lambda}^{\kappa_{3}}=A_{\lambda_{3}}^{\kappa_{3}} \leqslant \lambda^{\kappa_{3}}\left(V_{1} / \lambda^{\kappa_{1}}\right) V=V_{3}$, i.e., the Convexity Theorem follows.

The following diagram illustrates this proof:

Diagram 3.
According to the diagram we understand T as a stronger form of the Convexity Theorem, where the (λ, κ_{2})-hypothesis is replaced by the weaker $\left(\lambda_{2}, \kappa_{3}\right)$-hypothesis which is even necessary for the conclusion.

Theorem $C-M$ is of the following structure:
${ }^{8}$ With regard to the existence of Λ_{2} we note the following: If $0<f \in L, \int^{\infty} d t / f(t)=\infty$, then there is a λ satisfying (3) such that $A \sim f$. In fact, there is $F \in L$ such that $F \sim \int^{x} d t / f(t)$ (see [3]), and $\lambda=e^{F}$ satisfies $\Lambda \sim f$ (see [2, Theorem 21]).

Suppose that $\kappa_{3}<\kappa_{1}, \Lambda_{1} \leqslant A_{3}$, then

$$
A_{\lambda_{1}}^{\kappa_{1}} \leqslant V_{1}, A_{\lambda_{1}}^{\kappa_{3}} \leqslant V_{2} \text { imply } A_{\lambda_{3}}^{\kappa_{3}} \leqslant V_{3}=\lambda_{3}^{\kappa_{3}}\left(\frac{V_{1}}{\lambda_{1}^{\kappa_{1}}}+\frac{V_{2}}{\lambda_{1}^{\alpha_{3}}}\left(\frac{A_{1}}{A_{3}}\right)^{\kappa_{3}}\right) .
$$

The logical structure of this theorem and its proof is indicated by the following diagram:

$$
\left(\lambda_{3}, k_{3}\right) \underset{\text { DiAGRAM } 4 .}{ }\left(\lambda_{1}, \kappa_{3}\right) \rightarrow\left(\lambda_{2}, k_{3}\right)
$$

$A_{\lambda_{1}}^{\kappa_{1}} \leqslant V_{1}$ implies $A_{\lambda_{1}}^{\kappa_{3}} \leqslant V_{2}=\lambda_{1}^{\kappa_{3}}\left(V_{1} / \lambda_{1}^{\kappa_{1}}\right) A_{1}^{\kappa_{1}-\kappa_{3}}$ (by Theorem L with $\lambda_{3}=\lambda_{1}$); therefore, as was mentioned before, Theorems C and L (if $\kappa_{3}<\kappa_{1}, \Lambda_{1} \leqslant \Lambda_{3}$) are consequences of Theorem $C-M$.

In the discussion of the "Tauberian contents" of Theorem $C-M$ we may assume that $\Lambda_{3}^{\kappa_{3}} \leqslant \Lambda_{1}^{\kappa_{1}}$ and also, that both terms in V_{3} are of equal order (increase V_{1} or V_{2} if necessary), i.e., we may assume that $V_{1} / \lambda_{1}^{\kappa_{1}} \asymp$ $\left(V_{2} / \lambda_{1}^{\kappa_{3}}\right)\left(\Lambda_{1} / \Lambda_{3}\right)^{\kappa_{3}}$. We now introduce λ_{2} through $\Lambda_{2}^{\kappa_{1}-\kappa_{3}} \asymp A_{1}^{\kappa_{1}} \Lambda_{3}^{-\kappa_{3}}$; then $A_{\lambda_{1}}^{\kappa_{3}} \leqslant V_{2}$ and Theorem L (or $L C$) imply $A_{\lambda_{2}}^{\kappa_{3}} \leqslant \lambda_{2}^{\kappa_{2}}\left(V_{2} / \lambda_{1}^{\kappa_{3}}\right)\left(A_{1} / \Lambda_{2}\right)^{\kappa_{3}}=V_{2}^{*}$, and Theorem T (with $V=1, V_{2} *$ in place of V_{2}) shows that $A_{\lambda_{3}}^{\kappa_{3}} \leqslant V_{3}$, i.e., this part of Theorem $C-M$ is a consequence of Theorems L and T. Accordingly, we may view T as a stronger form of the essential case of Theorem $C-M$, where the $\left(\lambda_{1}, \kappa_{3}\right)$-hypothesis is replaced by the weaker $\left(\lambda_{2}, \kappa_{3}\right)$-hypothesis. Observe that both of these conditions are necessary for the conclusion and that the $\left(\lambda_{2}, \kappa_{3}\right)$-hypothesis is the weakest condition of this kind.

In Section 1 of this paper we will give some auxiliary results on L-functions. Section 2 is devoted to the proof of the Abelian and Tauberian theorems. It turns out that we need three Abelian Theorems, denoted by A_{1}, A_{2}, A_{3}, whose logical structure is indicated by the following diagram:

Diagram 5.
All other Abelian Theorems follow from these special ones in combination with the Tauberian Theorem T. The key to Theorems A_{1}, A_{2}, A_{3} and T are Theorem 1 (the sharpened Riesz mean-value theorem) and especially

Theorem 2 (which describes the influence of V_{1} on parts of $A_{\lambda_{3}}^{\kappa_{3}}$. In Section 3 we prove Theorems $C, L, L C$. Combinations of these theorems with Theorem T (similarly to the preceding discussion of the Convexity Theorem) lead to Theorems 3 and 4, which form the basis of the main Theorem 5 (Section 4). This theorem solves the problem which was laid out at the beginning of this introduction. For a complete proof of Theorem 5 we must construct counterexamples which show that the estimates V_{3} of Theorem 5 are minimal bounds. These counterexamples are also given in Section 4. We assume in Theorem 5 that the functions V_{1}, V_{2} do not increase or decrease too fast. The concluding Section 5 indicates how Theorem 5 changes when V_{1}, V_{2} increase or decrease more rapidly.

We conclude this introduction with a comment on the "o-theorems" or "mixed" theorems of Footnote 2 . If, for instance, $A_{\lambda_{1}}^{\kappa_{1}} \leqslant V_{1}$ in (1) is replaced by $A_{\lambda_{1}}^{\kappa_{1}}<V_{1}$ it seems natural to reduce this new case to the former by writing $A_{\lambda_{1}}^{\kappa_{1}}(x) \leqslant \epsilon(x) V_{1}(x), \epsilon(x) \rightarrow 0$, i.e., by replacing V_{1} by ϵV_{1} in (1). Unfortunately, the class L does not contain functions which decrease very slowly (see $[2,4.44]$), so that this approach to " o-theorems" is ruled out. Instead, we will use the fact that $A_{\lambda_{1}}^{\kappa_{1}}<V_{1}$ implies $\left|A_{\lambda_{1}}^{\kappa_{1}}(x)\right| \leqslant \epsilon V_{1}(x), x \geqslant x_{0}(\epsilon)$ for every constant $\epsilon>0$, and we will show that this constant ϵ (or a function of it) will also appear in the corresponding V_{3}. Obviously, in doing so we must control the constants which appear in V_{3}, in other words, we must prove that our estimates V_{3} are uniform in a certain sense. This remark explains why we formulate some of the following lemmas in Section 1 with numerical constants.

1. Auxiliary Results on L-Functions

The following lemmas contain statements on functions λ, λ_{3}, and we assume throughout that λ_{3} satisfies (3). By $\bar{\lambda}_{3}$ we will denote the inverse function of λ_{3}, and we will write $\bar{x}=\bar{\lambda}_{3}\left(\frac{1}{2} \lambda_{3}(x)\right)$.

If functions $f_{1}(x), f_{2}(x)$ are defined for all large x, we will write $f_{1}(x) \leqslant f_{2}(x)$ if $f_{1}(x) \leqslant f_{2}(x), x \geqslant x_{0}$, holds for some $x_{0}>0$ (and similarly $\dot{<}, \geqslant, \dot{>}, \dot{=}$).

Lemma 1. Suppose that λ satisfies (3), and that $\Lambda \leqslant \Lambda_{3}$. Then

$$
\begin{equation*}
\left|(d / d t)\left(\lambda_{3}{ }^{\prime} / \lambda^{\prime}\right)\right| \leqslant 3\left(\lambda_{3}{ }^{\prime}(t) / \lambda(t)\right) \tag{6}
\end{equation*}
$$

Proof. We have $\Lambda \lambda_{3}{ }^{\prime} \leqslant \Lambda_{3} \lambda_{3}{ }^{\prime}=\lambda_{3}$, and it follows (compare [2, Theorem 21]) that $\left|\left(\lambda_{3}{ }^{\prime}\right)^{\prime}\right| \leqslant 2 \lambda_{3}{ }^{\prime}$, which proves (6) since $\left(\lambda_{3}{ }^{\prime} / \lambda^{\prime}\right)^{\prime}=$ $\left(\Lambda \lambda_{3}{ }^{\prime} / \lambda\right)^{\prime}=\left(\Lambda \lambda_{3}{ }^{\prime}\right)^{\prime} / \lambda-\lambda_{3}{ }^{\prime} / \lambda$.

Lemma 2. Suppose that $0<\lambda \in L$, and that

$$
\begin{equation*}
0 \leqslant \lambda_{3}(x)-\lambda_{3}(t) \leqslant \lambda_{3}(x) \min \left(\frac{1}{2}, \frac{|A(x)|}{\Lambda_{3}(x)}\right)=\lambda_{3}(x) f(x) \tag{7}
\end{equation*}
$$

Then,

$$
\begin{equation*}
e^{-4} \leqslant \lambda(t) / \lambda(x) \leqslant e^{4} \tag{8}
\end{equation*}
$$

If, in addition, $\lambda \rightarrow \infty$, then

$$
\begin{align*}
& e^{-4} \leqslant \Lambda(t) \lambda_{3}^{\prime}(t) / \Lambda(x) \lambda_{3}^{\prime}(x) \leqslant e^{4}, \tag{9}\\
& e^{-8} \leqslant \frac{\lambda^{\prime}(t)}{\lambda_{3}^{\prime}(t)} / \frac{\lambda^{\prime}(x)}{\lambda_{3}^{\prime}(x)} \leqslant e^{8} . \tag{10}
\end{align*}
$$

Proof. We first prove (8) (cf. also [2, Theorem 31]). Suppose that $\lambda \uparrow{ }^{9}$. Applying the mean-value theorem we find that

$$
A=\log \lambda(x) / \lambda(t)=\log \lambda\left(\bar{\lambda}_{3}\left(\lambda_{3}(x)\right) / \lambda\left(\bar{\lambda}_{3}\left(\lambda_{3}(t)\right)\right)=\frac{\lambda_{3}(x)-\lambda_{3}(t)}{\Lambda(\xi) \lambda_{3}^{\prime}(\xi)}\right.
$$

for some ξ satisfying $\bar{x} \leqslant t \leqslant \xi \leqslant x$.
If $\Lambda(x) / \Lambda_{3}(x) \rightarrow \alpha>0, \alpha \leqslant \infty$, then

$$
A \leqslant \frac{\lambda_{3}(x) f(x)}{\Lambda(\xi) \lambda_{3}{ }^{\prime}(\xi)} \leqslant 2 \frac{\lambda_{3}(x) \min \left(\frac{1}{2}, A(\xi) / \Lambda_{3}(\xi)\right)}{\Lambda(\xi) \lambda_{3}^{\prime}(\xi)} \leqslant 2 \frac{\lambda_{3}(x)}{\lambda_{3}(\xi)} \leqslant 2 \frac{\lambda_{3}(x)}{\lambda_{3}(\bar{x})}=4 .
$$

If $\Lambda(x) / \Lambda_{3}(x) \rightarrow 0$ (hence \downarrow for large x), then

$$
\Lambda(\xi) \lambda_{3}^{\prime}(\xi)=\frac{\Lambda(\xi)}{\Lambda_{3}(\xi)} \lambda_{3}(\xi) \geqslant \frac{\Lambda(\xi)}{\Lambda_{3}(\xi)} \lambda_{3}(t) \geqslant \frac{\Lambda(x)}{\Lambda_{3}(x)} \frac{\lambda_{3}(x)}{2}
$$

hence

$$
A \leqslant \frac{\lambda_{3}(x)\left(\Lambda(x) / \Lambda_{3}(x)\right)}{\Lambda(\xi) \lambda_{3}{ }^{\prime}(\xi)} \leqslant 2
$$

This proves (8) in this case. If $\lambda \downarrow$, then $\tilde{\lambda}=1 / \lambda \uparrow$, and $\tilde{A}=\mid$, i.e., this case follows from the case $\lambda \uparrow$.

In order to obtain (9) we apply (8) to the function $\lambda^{*}==A \lambda_{3}{ }^{\prime}$, and (9) follows if we show that $\min \left(\frac{1}{2}, \Lambda / \Lambda_{3}\right) \leqslant\left|\Lambda^{*}\right| / \Lambda_{3}$. If $\lambda^{*} \uparrow$, then the assumption $\left(\Lambda^{*} / \Lambda_{3}\right) \leqslant \frac{1}{2}$ would imply $\lambda^{*} \geqslant c \lambda_{3}{ }^{2}(c \geqslant 0)$, and in turn $\lambda \leqslant 1$; hence $\Lambda^{*} / \Lambda_{3} \geqslant \frac{1}{2}$. If $\lambda^{*} \downarrow$, then $a(x)=\lambda^{*}\left(\bar{\lambda}_{3}(x)\right) \downarrow$; therefore, $a^{\prime}\left(\lambda_{3}(x)\right)=\lambda^{*}(x) / \lambda_{3}{ }^{\prime}(x) \uparrow 0$, and then $\Lambda \leqslant\left|A\left(\lambda_{3}{ }^{\prime} / \lambda^{*}\right)\right|=\left|\Lambda^{*}\right|$.

Inequality (10) follows from (8) and (9) because $\lambda^{\prime} / \lambda_{3}{ }^{\prime}=\lambda / \lambda^{*}$.
${ }^{9} \uparrow(\downarrow)$ denotes ultimately increasing (decreasing) in the wider sense.

Remark. This proof also shows that (8), (9) and (10) remain true (possibly with new constants) when $|\Lambda| / \Lambda_{3}$ in (7) is replaced by $c\left(|\Lambda| / \Lambda_{3}\right), c>0$.

Lemma 3. Suppose that $0<\lambda \in L$, and that $\lambda>\lambda_{3}^{-\Delta}$ (resp. $\lambda<\lambda_{3}{ }^{4}$) for some $\Delta>0$. Then there exists $K>0$ such that

$$
\begin{equation*}
\lambda(t) / \lambda(x) \leqslant K \quad(\text { resp. } \lambda(t) / \lambda(x) \geqslant K) \quad \text { if } \quad \bar{x} \leqslant t \leqslant x \tag{11}
\end{equation*}
$$

Proof. We have $\lambda \lambda_{3}{ }^{\Delta} \uparrow$ (resp. $\lambda \lambda_{3}^{-\Delta} \downarrow$).

Lemma 4. Suppose that $0<\lambda \in L$. Then

$$
\int^{x} \lambda(t) \lambda_{3}{ }^{\prime}(t) d t\left\{\begin{array}{l}
\geq \\
\gtrless \\
\ll \\
<
\end{array}\right\} \lambda(x) \lambda_{3}(x), \quad \text { if } \begin{cases}\lambda<\lambda_{3}^{\delta-1}, & \text { for every } \delta>0 \\
\lambda<\lambda_{3}{ }^{\Delta}, & \text { for some } \\
\lambda>0 \\
\lambda>\lambda_{3}^{\delta-1}, & \text { for some } \\
\lambda>0 \\
\lambda>\lambda_{3}{ }^{4}, & \text { for every } \Delta>0\end{cases}
$$

Proof. The statements on $<,>$ follow from [3] (note that $\int^{x} \lambda \lambda_{3}{ }^{\prime} d t=$ $\left.\int^{\lambda_{3}(x)} \lambda\left(\bar{\lambda}_{3}(v)\right) d v\right)$ or from [2, Theorem 25], and the remaining statements follow from Lemma $3(\geqslant)$ and from $\lambda \lambda_{3}^{2-\delta} \uparrow(\leqslant)$.

Lemma 5. Suppose that $0<\lambda \in C[0, \infty)$, that $\lambda \in L$, and that $\kappa>0$. Then

$$
\begin{align*}
\int_{0}^{x}\left(\lambda_{3}(x)-\lambda_{3}(t)\right)^{\kappa-1} \lambda_{3}{ }^{\prime}(t) \lambda(t) d t \asymp & \lambda_{3}^{\kappa-1}(x) \int_{0}^{x} \lambda_{3}{ }^{\prime} \lambda d t \geqslant \lambda_{3}{ }^{\kappa}(x) \lambda(x), \\
& \text { if } \lambda \leqslant \lambda_{3}{ }^{4} \quad \text { for some } \Delta>0, \tag{12}\\
\int_{0}^{x}\left(\lambda_{3}(x)-\lambda_{3}(t)\right)^{\kappa-1} \lambda_{3}{ }^{\prime}(t) \lambda(t) d t \leqslant & C(\kappa, \delta) \lambda_{3}^{\kappa}(x) \lambda(x), \\
& \text { if } \lambda>\lambda_{3}^{\delta-1} \quad \text { for some } \delta>0 . \tag{13}
\end{align*}
$$

Proof. Formula (12) can be proven in the following way: If $\lambda \leqslant \lambda_{3}^{-2}$, then (12) is obvious. If $\lambda_{3}^{-2} \leqslant \lambda \leqslant \lambda_{3}{ }^{4}$, then it follows from Lemma 3 that $\lambda(t) \asymp \lambda(x)$ if $\bar{x} \leqslant t \leqslant x$, and we have

$$
\begin{aligned}
\int_{0}^{x} & \left(\lambda_{3}(x)-\lambda_{3}(t)\right)^{\kappa-1} \lambda_{3}{ }^{\prime}(t) \lambda(t) d t \\
& \asymp \lambda_{3}^{\kappa-1}(x) \int_{0}^{\bar{x}} \lambda_{3}{ }^{\prime}(t) \lambda(t) d t+\lambda(x) \int_{\hat{x}}^{x}\left(\lambda_{3}(x)-\lambda_{3}(t)\right)^{\kappa-1} \lambda_{3}{ }^{\prime}(t) d t \\
& \asymp \lambda_{3}^{\kappa-1}(x)\left(\int_{0}^{\bar{x}} \lambda_{3}{ }^{\prime}(t) \lambda(t) d t+\lambda(x) \lambda_{3}(x)\right) \\
& \asymp \lambda_{3}^{\kappa-1}(x) \int_{0}^{x} \lambda_{3}{ }^{\prime}(t) \lambda(t) d t
\end{aligned}
$$

The inequality in (12) follows from Lemma 4. In order to prove (13) we may proceed on similar lines if we observe that the constants in Lemmas 3 and 4 depend on Δ, δ only. More directly the result follows from

$$
\begin{aligned}
& \int_{x_{0}}^{x}\left(\lambda_{3}(x)-\lambda_{3}(t)\right)^{\kappa-1} \lambda_{3}{ }^{\prime}(t) \lambda(t) d t \\
& \quad \leqslant \lambda(x) \lambda_{3}^{1-\delta}(x) \int_{x_{0}}^{x}\left(\lambda_{3}(x)-\lambda_{3}(t)\right)^{\kappa-1} \lambda_{3}{ }^{\prime}(t) \lambda_{3}^{\delta-1}(t) d t
\end{aligned}
$$

Lemma 6. Suppose that λ satisfies (3), and that $\kappa>0$. Then

$$
\begin{equation*}
\int_{y}^{x}(\lambda(x)-\lambda(t))^{k-1} \lambda^{\prime}(t) d t \asymp \min \left(\lambda^{\kappa}(x),\left(\left(\lambda_{3}(x)-\lambda_{3}(y)\right) \frac{\lambda^{\prime}(x)}{\lambda_{3}^{\prime}(x)}\right)^{\kappa}\right) \tag{14}
\end{equation*}
$$

as $x \rightarrow \infty, \bar{x} \leqslant y \leqslant x$.
Proof. The integral is $(1 / \kappa)(\lambda(x)-\lambda(y))^{\mu}$. If

$$
\lambda_{3}(x)-\lambda_{3}(y) \leqslant \lambda_{3}(x)\left(A(x) / A_{3}(x)\right),
$$

then for suitable $\xi \in[y, x]$

$$
\begin{aligned}
\lambda(x)-\lambda(y) & =\lambda\left(\bar{\lambda}_{3}\left(\lambda_{3}(x)\right)\right)-\lambda\left(\bar{\lambda}_{3}\left(\lambda_{3}(y)\right)\right) \\
& =\left(\lambda_{3}(x)-\lambda_{3}(y)\right) \frac{\lambda^{\prime}(\xi)}{\lambda_{3}^{\prime}(\xi)} \asymp\left(\lambda_{3}(x)-\lambda_{3}(y)\right) \frac{\lambda^{\prime}(x)}{\lambda_{3}^{\prime}(x)},
\end{aligned}
$$

by (10) (note that $\lambda_{3}(x)-\lambda_{3}(y) \leqslant \frac{1}{2} \lambda_{3}(x)$). If

$$
\lambda_{3}(x)-\lambda_{3}(y) \geqslant \lambda_{3}(x)\left(\Lambda(x) / \Lambda_{3}(x)\right)
$$

then

$$
\frac{\lambda_{3}(x)}{2}=: \lambda_{3}(x)-\lambda_{3}(\bar{x}) \geqslant \lambda_{3}(x)-\lambda_{3}(y) \geqslant \lambda_{3}(x) \frac{A(x)}{A_{3}(x)}
$$

hence, introducing $x^{*}=\bar{\lambda}_{3}\left(\lambda_{3}(x)-\lambda_{3}{ }^{\prime}(x) \Lambda(x)\right) \geq y \geq \bar{x}, \lambda(x)-\lambda\left(x^{*}\right)=$ $\lambda_{3}{ }^{\prime}(x) A(x) \lambda^{\prime}(\xi) / \lambda_{3}{ }^{\prime}(\xi)$ with $\xi \in\left[x^{*}, x\right]$. Therefore, by use of (10)

$$
\lambda(x) \geqslant \lambda(x)-\lambda(y) \geqslant \lambda(x)-\lambda\left(x^{*}\right) \asymp \lambda_{3}{ }^{\prime}(x) \Lambda(x) \lambda^{\prime}(\xi) / \lambda_{3}{ }^{\prime}(\xi) \geqslant \lambda(x)
$$

Thus, in this case,

$$
(\lambda(x)-\lambda(y))^{\kappa} \simeq \lambda^{\kappa}(x)
$$

Lemma 7. Suppose that λ satisfies (3), and that $\lambda^{\prime}(x) / \lambda_{3}{ }^{\prime}(x)$ is monotone for $x \geqslant x_{0}$. Then

$$
\begin{equation*}
\frac{\lambda(x)-\lambda(t)}{\lambda_{3}(x)-\lambda_{3}(t)} \uparrow(\downarrow) \quad \text { in } \quad t \in\left[x_{0}, x\right] \quad \text { if } \frac{\lambda^{\prime}(x)}{\lambda_{3}^{\prime}(x)} \uparrow(\downarrow) . \tag{15}
\end{equation*}
$$

If $\lambda^{\prime}(x) / \lambda_{3}{ }^{\prime}(x) \uparrow$, then for every $\alpha<1$,

$$
\begin{equation*}
\frac{\lambda_{3}^{\prime}(t)}{\lambda^{\prime}(t)}\left(\frac{\lambda(x)-\lambda(t)}{\lambda_{3}(x)-\lambda_{3}(t)}\right)^{\alpha} \downarrow \quad \text { in } \quad t \in\left[x_{1}, x\right], \quad x_{1}=x_{1}(\alpha) . \tag{16}
\end{equation*}
$$

Proof. Writing $y=\lambda_{3}(x), \tau=\lambda_{3}(t), \mu(\tau)=\lambda\left(\bar{\lambda}_{3}(\tau)\right)$, we have

$$
\mu^{\prime}(\tau)=\lambda^{\prime}\left(\bar{\lambda}_{3}(\tau)\right) / \lambda_{3}^{\prime}\left(\bar{\lambda}_{3}(\tau)\right), \quad \frac{\lambda(x)-\lambda(t)}{\lambda_{3}(x)-\lambda_{3}(t)}=\frac{\mu(y)-\mu(\tau)}{y-\tau}
$$

(and μ and its derivatives are L-functions of the variable $\bar{\lambda}_{3}(\tau)$). Statement (15) follows immediately from

$$
\frac{\mu(y)-\mu(\tau)}{y-\tau}=\int_{0}^{1} \mu^{\prime}(\tau+w(y-\tau)) d w=\int_{0}^{1} \mu^{\prime}(w y+\tau(1-w)) d w
$$

and from the monotonicity of μ^{\prime}. In proving (16) we may assume that $\alpha \in(0,1)$ (if $\alpha \leqslant 0$, then (16) follows from (15)), and (16) is true if

$$
A(y, \tau)=\frac{1}{\left(\mu^{\prime}(\tau)\right)^{3}} \frac{\mu(y)-\mu(\tau)}{y-\tau}=\frac{1}{\left(\mu^{\prime}(\tau)\right)^{\beta}} \int_{0}^{1} \mu^{\prime}(\tau+w(y-\tau)) d w \downarrow
$$

for every fixed $\beta>1$ and for $y(\beta)<\tau \uparrow y$. Writing $g(\tau)=\mu^{\prime \prime}(\tau) / \mu^{\prime}(\tau)$ we have

$$
\begin{aligned}
A_{\tau} & =\frac{\partial}{\partial \tau} A(y, \tau) \\
& =A(y, \tau)\left(\frac{\int_{0}^{1} g(\tau+w(y-\tau)) \mu^{\prime}(\tau+w(y-\tau))(1-w) d w}{\int_{0}^{1} \mu^{\prime}(\tau+w(y-\tau)) d w}-\beta g(\tau)\right)
\end{aligned}
$$

Integrating by parts we find

$$
\begin{aligned}
& \int_{0}^{1} g(\tau+w(y-\tau)) \mu^{\prime}(\tau+w(y-\tau))(1-w) d y \\
& \quad=-\frac{\mu^{\prime}(\tau)}{y-\tau}+\frac{1}{y-\tau} \int_{0}^{1} \mu^{\prime}(\tau+w(y-\tau)) d w
\end{aligned}
$$

and $A_{\tau} \leqslant 0$ if $g(\tau) \geqslant 1 /(y-\tau)$. Therefore, we must only discuss the case $g(\tau) \leqslant 1 /(y-\tau)$, and we distinguish between $g \downarrow$ and $g \uparrow$. In the first case $A_{\tau} \leqslant 0$ because

$$
\int_{0}^{1} g \mu^{\prime}(1-w) d w \leqslant g(\tau) \int_{0}^{1} \mu^{\prime}(\tau+w(y-\tau)) d w
$$

and the case $g \uparrow, g(\tau) \leqslant 1 /(y-\tau)$ remains. In this case $(1 / g)^{\prime} \rightarrow 0$, and in particular $\left|(1 / g)^{\prime}\right| \leqslant \delta=1-1 / \beta$ for all large τ (the bound depends on β). Then

$$
\frac{1}{g(\tau)}-\frac{1}{g(y)}=-\int_{\tau}^{y}\left(\frac{1}{g}\right)^{\prime} d \tau \leqslant \delta(y-\tau) \leqslant \frac{\delta}{g(\tau)},
$$

hence $g(y) \leqslant \beta g(\tau)$, and $A_{\tau} \leqslant 0$ follows from

$$
\int_{0}^{1} g \mu^{\prime}(1-w) d w \leqslant g(y) \int_{0}^{1} \mu^{\prime}(\tau+w(y-\tau)) d w
$$

2. Abelian and Tauberian Theorems

Throughout the paper the index κ of Riesz means is in [0, 1]. Suppose that $\kappa>0,0 \leqslant \xi \leqslant x$, that λ satisfies (3), and that $A \in M$. Then we define

$$
A_{\lambda}{ }^{\kappa}(x, \xi)=\int_{0}^{\xi}(\lambda(x)-\lambda(t))^{\kappa-1} \lambda^{\prime}(t) A(t) d t
$$

In what follows, V, V_{1}, V_{2} will denote functions which are nonnegative and belong to $C[0, \infty)$ and L. We introduce the condition

$$
\begin{equation*}
V_{i} \lambda_{i}^{1-\kappa_{i}}>1, \quad V_{i} \lambda_{i}^{1-\epsilon_{i}}>-1 \quad \text { for some } \quad \epsilon_{i} \in(0,1)^{10} \tag{i}
\end{equation*}
$$

which will be of central importance.
Our Abelian theorems will lead from assumptions $\left|A_{\lambda_{1}}^{\kappa_{1}}\right| \leqslant V_{1}$ to conclusions $\left|A_{\lambda_{3}}^{\kappa_{3}}\right| \leqslant c_{1} V_{3}$. If V_{3} satisfies $\left(17_{3}\right)$, then it follows from

$$
\begin{equation*}
\left|A_{\lambda_{3}}^{\kappa_{3}}\left(x, x_{0}\right)\right| \leqslant \underset{0 \leqslant t \leqslant x_{0}}{\operatorname{ess} \sup }|A(t)|\left(\lambda_{3}(x)-\lambda_{3}\left(x_{0}\right)\right)^{\kappa_{3}-1} \lambda_{3}\left(x_{0}\right), \tag{18}
\end{equation*}
$$

that ${ }^{11}$

$$
\begin{equation*}
\left|A_{\lambda_{3}}^{\kappa_{3}}\left(x, x_{0}\right) / V_{3}(x)\right| \rightarrow 0 \quad \text { as } \quad x \rightarrow \infty \tag{19}
\end{equation*}
$$

hence, in order to prove an Abelian theorem of this type we need only show that $\left|A_{\lambda_{3}}^{\kappa_{3}}(x)-A_{\lambda_{3}}^{\kappa_{3}}\left(x, x_{0}\right)\right| \leqslant c_{2} V_{3}(x)$, where $0<c_{2}<c_{1}$.

[^2]Theorem 1 (Riesz mean-value theorem with normalizing factor). Suppose that $0<\kappa_{1} \leqslant 1, A \in M$. Then

$$
\begin{equation*}
A_{\lambda_{1}}^{\kappa_{1}}(x, \xi)=\left(\frac{\lambda_{1}\left(\xi^{\prime}\right)}{\lambda_{1}(x)}\right)^{1-\kappa_{1}} A_{\lambda_{1}}^{\kappa_{1}}\left(\xi^{\prime}\right) \quad \text { for some } \quad \xi^{\prime} \in[0, \xi] . \tag{20}
\end{equation*}
$$

For a proof see, e.g., [7].
The following statement is a consequence of (20) (discuss the cases ξ^{\prime} near 0 and ξ^{\prime} large separately): If V_{1} satisfies (17_{1}), then

$$
\begin{equation*}
\left|A_{\lambda_{1}}^{\kappa_{1}}(x)\right| \leqslant V_{1}(x) \quad \text { implies } \quad\left|A_{\lambda_{1}}^{\kappa_{1}}(x, \xi)\right| \leqslant\left(\frac{\lambda_{1}(\eta)}{\lambda_{1}(x)}\right)^{1-\kappa_{1}} V_{1}(\eta) \tag{21}
\end{equation*}
$$

whenever $\xi \leqslant \eta \leqslant x, \eta \geqslant x_{0}\left(x_{0}\right.$ independent of ξ and $\left.x\right)$.
Theorem A_{1} (First Theorem of Consistency). Suppose that $\left(17_{1}\right)$ holds, and that

$$
0 \leqslant \kappa_{1}<\kappa_{3} \leqslant 1, \quad A \in M .
$$

Then

$$
\begin{gather*}
\left|A_{\lambda_{1}}^{\kappa_{1}}\right| \leqslant V_{1} \quad \text { implies } \quad\left|A_{\lambda_{1}}^{\kappa_{3}}\right| \leqslant K V_{3}, \\
V_{3}=\lambda_{1}^{\kappa_{3}} \frac{V_{1}}{\lambda_{1}^{\kappa_{1}}} \text { where } K= \begin{cases}1 & \text { if } \kappa_{1}>0, \\
\Gamma\left(\kappa_{3}\right) \Gamma\left(\epsilon_{1}\right) / \Gamma\left(\kappa_{3}+\epsilon_{1}\right) & \text { if } \kappa_{1}=0 .\end{cases} \tag{22}
\end{gather*}
$$

Proof. ${ }^{12}$ If $\kappa_{1}>0$, then (from the mean-value theorem for integrals)

$$
\begin{equation*}
A_{\lambda_{1}}^{\kappa_{3}}(x)=\lambda_{1}^{\kappa_{3}-\kappa_{1}}(x) A_{\lambda_{1}}^{\kappa_{1}}(x, \xi) \tag{23}
\end{equation*}
$$

and (22) follows from (21) (for $\eta=x$).
If $\kappa_{1}=0$, then

$$
\begin{aligned}
\left|A_{\lambda_{1}}^{\kappa_{3}}(x)\right| & \leqslant \underset{0 \leqslant \leqslant \leqslant x}{\operatorname{ess} \sup }\left|A(t) \lambda_{1}^{1-\epsilon_{1}}(t)\right| \int_{0}^{x}\left(\lambda_{1}(x)-\lambda_{1}(t)\right)^{\kappa_{3}-1} \lambda_{1}^{\prime}(t) \lambda_{1}^{\epsilon_{1}-1}(t) d t \\
& =\frac{\Gamma\left(\epsilon_{1}\right) \Gamma\left(\kappa_{3}\right)}{\Gamma\left(\epsilon_{1}+\kappa_{3}\right)} \underset{0 \leqslant t \leqslant x}{\operatorname{ess} \sup }\left|A(t) \lambda_{1}^{1-\epsilon_{1}}(t)\right|\left(\lambda_{1}(x)\right)^{\kappa_{3}+\epsilon_{1}-1}
\end{aligned}
$$

and (22) follows from (17_{1}).
Two arguments will repeatedly be used in the following proofs, and we will discuss them beforehand.

[^3]Suppose that $\lambda_{j}(j=1,2,3)$ satisfy (3). Let

$$
f_{i}(x)=\lambda_{3}(x) \min \left(\frac{1}{2}, \frac{\Lambda_{i}(x)}{\Lambda_{3}(x)}\right), \quad x_{i}^{*}-\bar{\lambda}_{3}\left(\lambda_{3}(x)-f_{i}(x)\right) \quad(i=1,2)
$$

Then it follows from Lemma 2 that $\varphi_{i}(x)=\lambda_{i}{ }^{\prime}(x) / \lambda_{3}{ }^{\prime}(x)$ satisfies

$$
e^{-16}<\varphi_{i}(\alpha) / \varphi_{i}(\beta)<e^{16} \quad \text { whenever }^{13} \quad x_{i}^{*} \leqslant \alpha \leqslant \beta \leqslant x, x \text { large. (24) }
$$

Suppose $0 \leqslant x_{1} \leqslant x_{2} \leqslant x$, and consider the integral

$$
I=\int_{x_{1}}^{x_{2}}(\lambda(x)-\lambda(t))^{\kappa-1} \lambda^{\prime}(t) A(t) a(t) b_{1}(t) \cdots b_{p}(t) d t, \quad 0<\kappa \leqslant 1
$$

where λ satisfies (3), $A \in M, 0 \leqslant a \uparrow, b_{1} \cdots b_{p}$ monotone and nonnegative. Then a repeated application of the mean-value theorem for integrals shows that

$$
\begin{array}{r}
I=a\left(x_{2}\right) b_{1}\left(\xi_{1}\right) \cdots b_{p}\left(\xi_{p}\right) \int_{p}^{\sigma}(\lambda(x)-\lambda(t))^{\kappa-1} \lambda^{\prime}(t) A(t) d t, \\
\xi_{1}, \ldots, \xi_{p}, \rho, \sigma \in\left[x_{1}, x_{2}\right]
\end{array}
$$

and this implies

$$
\begin{equation*}
I\left|\leqslant 2 a\left(x_{2}\right) b_{\mathbf{1}}\left(\xi_{1}\right) \cdots b_{p}\left(\xi_{p}\right) \sup _{\mathbf{0} \leqslant \xi \leqslant x}\right| A_{\lambda}^{\kappa}(x, \xi) \mid \tag{25}
\end{equation*}
$$

Theorem A_{2}. Suppose that $\left(17_{1}\right)$ holds, and that

$$
0 \leqslant \kappa_{1} \leqslant 1, \quad A \in M, \quad A_{3} \leqslant A_{1} .
$$

Then ${ }^{14}$

$$
\begin{equation*}
A_{\lambda_{1}}^{\kappa_{1}} \mid \leqslant V_{1} \text { implies } A_{\lambda_{3}}^{\kappa_{1}} ; 5 V_{3}, \quad V_{3}=\lambda_{3}^{\kappa_{1}} \frac{V_{1}}{\lambda_{1}^{\kappa_{1}}}\left(\frac{A_{1}}{\Lambda_{3}}\right)^{\kappa_{1}} \tag{26}
\end{equation*}
$$

Proof. We may assume that $\kappa_{1}>0$. The inequality $\Lambda_{3} \leqslant \Lambda_{1}$ implies $\lambda_{3} \geqslant c \lambda_{1}$ for some $c>0$, and it follows that $\left(17_{1}\right)$ implies $\left(17_{3}\right)\left(\right.$ with $\left.\kappa_{3}=\kappa_{1}\right)$, and that $\lambda_{3}{ }^{\prime} / \lambda_{1}{ }^{\prime}=\left(\Lambda_{1} / \Lambda_{3}\right)\left(\lambda_{3} / \lambda_{1}\right) \geqslant c$. Let,

$$
\begin{aligned}
I & =A_{\lambda_{3}}^{\kappa_{1}}(x)-A_{\lambda_{3}}^{\kappa_{1}}\left(x, x_{0}\right) \\
& =\int_{x_{0}}^{x}\left(\lambda_{1}(x)-\lambda_{1}(t)\right)^{\kappa_{1}-1} \lambda_{1}^{\prime}(t) A(t)\left(\frac{\lambda_{3}(x)-\lambda_{3}(t)}{\lambda_{1}(x)-\lambda_{1}(t)}\right)^{\kappa_{1}-1} \frac{d t}{\varphi_{1}(t)},
\end{aligned}
$$

${ }^{13} \varphi_{i}(\alpha) / \varphi_{i}(\beta)=\left(\varphi_{i}(\alpha) / \varphi_{i}(x)\right)\left(\varphi_{i}(x) \varphi_{i}(\beta)\right)$.
${ }^{14}$ The special case $V_{3}=\lambda_{3}^{k_{1}}$ is due to Zygmund [11] and [1, Theorem 2.61].
(x_{0} sufficiently large). If $\varphi_{1} \downarrow$, then it follows from Lemma 7 that $J=\left(\left(\lambda_{3}(x)-\lambda_{3}(t)\right) /\left(\lambda_{1}(x)-\lambda_{1}(t)\right)\right)^{\kappa_{1}-1}\left(1 / \varphi_{1}(t)\right) \uparrow$ in t, and (25) shows that

$$
\left.|I| \leqslant 2\left(\frac{\lambda_{3}{ }^{\prime}(x)}{\lambda_{1}^{\prime}(x)}\right)^{\kappa_{1}} \sup _{0 \leqslant \xi \leqslant x} \right\rvert\, A_{\lambda_{1}}^{\kappa_{1}}(x, \xi) .
$$

If $q_{1} \uparrow$, then (15) and (25) (with $a \equiv 1$) show that

$$
|I| \leqslant 2\left(\frac{\lambda_{3}{ }^{\prime}\left(\xi_{1}\right)}{\lambda_{1}^{\prime}\left(\xi_{1}\right)}\right)^{\kappa_{1}-1} \frac{\lambda_{3}{ }^{\prime}\left(\xi_{2}\right)}{\lambda_{1}{ }^{\prime}\left(\xi_{2}\right)} \sup _{0 \leqslant \xi x}\left|A_{\lambda_{1}}^{\kappa_{1}}(x, \xi)\right|, \quad \xi_{1}, \xi_{2} \in\left[x_{0}, x\right]
$$

and we have $\lambda_{3}{ }^{\prime}(x) / \lambda_{1}{ }^{\prime}(x) \rightarrow d>0$ in this case. In both cases we have (for x_{0} sufficiently large)

$$
\left.\left|I \leqslant 4\left(\frac{\lambda_{3}{ }^{\prime}(x)}{\lambda_{1}^{\prime}(x)}\right)^{\kappa_{1}} \sup _{0 \leqslant 5 \leqslant x}\right| A_{\lambda_{1}}^{\kappa_{1}}(x, \xi) \right\rvert\,
$$

The statement (26) now follows from (21), $\eta=x$. (The factor 5 appears in (26) on account of (19).)

Theorem A_{3}. Suppose that V_{1} satisfies $\left(17_{1}\right)$, that

$$
0 \leqslant \kappa_{3}<\kappa_{1} \leqslant 1, \quad A \in S,
$$

and that ${ }^{15}$

$$
V_{1}(x+1) \leqslant c V_{1}(x), \quad A_{1} \geqslant \alpha, \quad \text { for constants } c>0, \quad \alpha>0
$$

Then

$$
\begin{equation*}
\left|A_{\lambda_{1}}^{\kappa_{1}}\right| \leqslant V_{1} \text { implies } \quad\left|A_{\lambda_{1}}^{\kappa_{3}}\right| \leqslant K_{1} V_{3}, \quad V_{3}=\lambda_{1}^{\kappa_{3}} \frac{V_{1}}{\lambda_{1}^{\kappa_{2}}} \Lambda_{1}^{\kappa_{1}-\kappa_{3}} \tag{27}
\end{equation*}
$$

for some K_{1} which depends on c, κ_{3} and α only.
This is essentially Theorem 1.61 of [1], and we omit its proof (which uses Lemma 2).

Our next theorem is the essential tool for the proof of the Tauberian Theorem T. It exhibits the magnitude of $A_{\lambda_{3}}^{\kappa_{3}}(x, y)$, as far as it is controlled by V_{1} only, in a certain range of y near x, and it turns out that $y=x_{1}^{*}$ is a critical choice.

Theorem 2. Suppose that (171) holds, and that

$$
0<\kappa_{3} \leqslant \kappa_{1} \leqslant 1, \quad A \in M, \quad \Lambda_{1} \leqslant \Lambda_{3} .
$$

[^4]Then there is a numerical constant $K_{2}>0^{16}$ such that $\left|A_{\lambda_{1}}^{\kappa_{1}}\right| \leqslant V_{1}$ implies

$$
\begin{gather*}
\left|A_{\lambda_{3}}^{\kappa_{3}}\left(x, x_{1}^{*}\right)\right|<K_{2} V_{3} \tag{28}\\
V_{3}=\lambda_{3}^{\kappa_{3}} \frac{V_{1}}{\lambda_{1}^{\kappa_{1}}}\left(\frac{\Lambda_{1}}{\Lambda_{3}}\right)^{\kappa_{3}}+\int_{0}^{x}\left(\lambda_{3}(x)-\lambda_{3}(t)\right)^{\kappa_{3}-1} \lambda_{3}^{\prime}(t) \frac{V_{1}(t)}{\lambda_{1}^{\kappa_{1}}(t)} d t
\end{gather*}
$$

if V_{3} satisfies $\left(17_{3}\right) .{ }^{17}$
Remark. The following proof will also show that
$\left|A_{\lambda_{1}}^{\kappa_{1}}\right| \leqslant V_{1}$ implies $\left|A_{\lambda_{3}}^{\alpha_{3}}(x, \bar{x})\right| \leqslant K_{2} V_{3}, \quad V_{3}=\lambda_{3}^{\kappa_{3}} \frac{V_{1}}{\lambda_{1}^{\alpha_{1}}} \quad$ if $A_{1} \doteq \Lambda_{3}$.
Proof of Theorem 2. Throughout this proof we will assume that x_{0} and x are sufficiently large.

We split the integral $A_{\lambda_{3}}^{\kappa_{3}}\left(x, x_{1}{ }^{*}\right)-A_{\lambda_{3}}^{\kappa_{3}}\left(x, x_{0}\right)$ into two terms:

$$
I_{1}=\int_{x_{0}}^{\bar{x}}(\cdots) d t, \quad I_{2}=\int_{\bar{x}}^{x_{1}{ }^{*}}(\cdots) d t
$$

We have

$$
\begin{array}{r}
I_{1}=\left(\lambda_{3}(x)-\lambda_{3}(\bar{x})\right)^{\kappa_{3}-1} \int_{\xi}^{\bar{x}} \lambda_{3}^{\prime}(t) A(t) d t=\lambda_{3}^{\kappa_{3}-1}(\bar{x}) \int_{\xi}^{\bar{x}} \lambda_{3}^{\prime}(t) A(t) d t, \\
\\
\left(x_{0} \leqslant \xi \leqslant \bar{x}\right)
\end{array}
$$

and, by partial integration,

$$
\lambda_{3}^{1-\kappa_{3}}(\bar{x}) I_{1}=\frac{1}{p_{1}(\bar{x})} \int_{\xi}^{\bar{x}} \lambda_{1}^{\prime}(t) A(t) d t-\int_{\xi}^{\bar{x}}\left(\frac{1}{\varphi_{1}}\right)^{\prime} d t \int_{\xi}^{t} \lambda_{1}^{\prime}(\tau) A(\tau) d \tau .
$$

It follows from (171) and (22) that

$$
\left|\int_{\xi}^{l} \lambda_{1}^{\prime}(\tau) A(\tau) d \tau\right| \leqslant 2 \lambda_{1}^{1-\kappa_{1}}(t) V_{1}(t)
$$

and we find from (6)

$$
\left|I_{1}\right| \leqslant 2 \lambda_{3}^{\kappa_{3}-1}(\bar{x})\left(\lambda_{3}(\bar{x}) \frac{\Lambda_{1}(\bar{x})}{\Lambda_{3}(\bar{x})} \frac{V_{1}(\bar{x})}{\lambda_{1}^{\kappa_{1}}(\bar{x})}+3 \int_{\xi}^{\bar{x}} \lambda_{3}{ }^{\prime}(t) \frac{V_{1}(t)}{\lambda_{1}^{\kappa_{1}(t)}} d t\right) .
$$

${ }^{16}$ The proof will show that we may take $K_{2}=5 e^{32}$.
${ }^{17} V_{3} \geqslant \lambda_{3}^{\kappa_{3}-1}(x) \int_{0}^{x} \lambda_{3}{ }^{\prime}\left(V_{1}^{\prime} / \lambda_{1}^{\kappa_{1}}\right) d t$ shows that (17 $)$ holds if $\int^{\infty} \lambda_{3}{ }^{\prime}\left(V_{1} / \lambda_{1}^{\kappa_{1}}\right) d t=\infty$.

The ultimate monotonicity of $V_{1}(t) / \lambda_{1}^{\kappa_{1}}(t)$ implies $\lambda_{3}(\bar{x})\left(V_{1}(\bar{x}) / \lambda_{1}^{\kappa_{1}}(\bar{x})\right) \leqslant$ $2 \int_{0}^{x} \lambda_{3}{ }^{\prime}\left(V_{1} / \lambda_{1}^{\kappa_{1}}\right) d t$, and the estimate

$$
\left|I_{1}\right| \leqslant 10 \lambda_{3}^{\kappa_{3}-1}(\bar{x}) \int_{0}^{x} \lambda_{3} \frac{V_{1}}{\lambda_{1}^{\kappa_{1}}} d t \leqslant 20 \int_{0}^{x}\left(\lambda_{3}(x)-\lambda_{3}(t)\right)^{\kappa_{3}-1} \lambda_{3}{ }^{\prime}(t) \frac{V_{1}(t)}{\lambda_{1}^{\kappa_{1}}(t)} d t
$$

of I_{1} follows. If $\Lambda_{1} \doteq \Lambda_{3}$, then $\left(1 / \varphi_{1}\right)^{\prime} \doteq 0$, and (29) follows from the preceeding discussion of I_{1}.

Next, we have (by partial integration)

$$
\begin{aligned}
I_{2}= & \int_{\bar{x}}^{x_{1}^{*}}\left(\lambda_{1}(x)-\lambda_{1}(t)\right)^{\kappa_{1}-1} \lambda_{1}^{\prime}(t) A(t)\left(\lambda_{1}(x)-\lambda_{1}(t)\right)^{1-\kappa_{1}}\left(\lambda_{3}(x)-\lambda_{3}(t)\right)^{\kappa_{3}-1} \frac{d t}{\varphi_{1}(t)} \\
= & \left(\lambda_{1}(x)-\lambda_{1}\left(x_{1}{ }^{*}\right)\right)^{1-\kappa_{1}} \frac{f_{1}^{\kappa_{3}-1}(x)}{\varphi_{1}\left(x_{1}{ }^{*}\right)} \int_{\bar{x}}^{x_{1}{ }^{*}}\left(\lambda_{1}(x)-\lambda_{1}(t)\right)^{\kappa_{1}-1} \lambda_{1}{ }^{\prime}(t) A(t) d t \\
& \cdots \int_{\bar{x}}^{x_{1}{ }^{*}} \frac{d}{d t}\left\{\left(\lambda_{1}(x)-\lambda_{1}(t)\right)^{1-\kappa_{1}}\left(\lambda_{3}(x)-\lambda_{3}(t)\right)^{\kappa_{3}-1} \frac{1}{\varphi_{1}(t)}\right\} d t \\
& \times \int_{\bar{x}}^{t}\left(\lambda_{1}(x)-\lambda_{1}(\tau)\right)^{\kappa_{1}-1} \lambda_{1}(\tau) A(\tau) d \tau .
\end{aligned}
$$

It follows from $\lambda_{1}(x)-\lambda_{1}\left(x_{1}{ }^{*}\right)=\lambda_{1}\left(\bar{\lambda}_{3}\left(\lambda_{3}(x)\right)\right)-\lambda_{1}\left(\bar{\lambda}_{3}\left(\lambda_{3}\left(x_{1}{ }^{*}\right)\right)\right)$, that

$$
\left(\lambda_{1}(x)-\lambda_{1}\left(x_{1}^{*}\right)\right)^{1-\kappa_{1}}=\left(f_{1}(x) \varphi_{1}(\xi)\right)^{1-\kappa_{1}}, \quad x_{1}^{*} \leqslant \xi \leqslant x
$$

We have

$$
\begin{equation*}
f_{1}(x) \geqslant \frac{1}{2} \lambda_{3}(x)\left(\Lambda_{1}(x) / \Lambda_{3}(x)\right), \tag{30}
\end{equation*}
$$

and (30) and (24) show that

$$
\begin{equation*}
\left(\lambda_{1}(x)-\lambda_{1}\left(x_{1}^{*}\right)\right)^{1-\kappa_{1}} \frac{f_{1}^{\kappa_{3}-1}(x)}{\varphi_{1}\left(x_{1}^{*}\right)} \leqslant 2 e^{32} \varphi_{1}^{-\kappa_{1}}(x)\left(\lambda_{3}{ }^{\prime}(x) \Lambda_{1}(x)\right)^{\kappa_{3}-\kappa_{1}} . \tag{31}
\end{equation*}
$$

A short calculation shows that

$$
\frac{d}{d t}\{\cdots\}
$$

$$
=\{\cdots\}\left(\frac{\lambda_{3}{ }^{\prime}(t)}{\lambda_{3}(x)-\lambda_{3}(t)}\left\langle\left(1-\kappa_{3}\right)-\left(1-\kappa_{1}\right) \varphi_{1}(t) \frac{\lambda_{3}(x)-\lambda_{3}(t)}{\lambda_{1}(x)-\lambda_{1}(t)}\right\rangle+\varphi_{1}\left(\frac{1}{p_{1}}\right)^{\prime}\right) .
$$

It follows from $\lambda_{3} \varphi_{1}=\left(\Lambda_{3} / \Lambda_{1}\right) \lambda_{1} \uparrow$ that

$$
\frac{\varphi_{1}(t)}{\varphi_{1}(y)} \leqslant \frac{\lambda_{3}(y)}{\lambda_{3}(t)} \leqslant \frac{\lambda_{3}(y)}{\lambda_{3}(\bar{x})} \leqslant 2, \quad \text { if } \quad \bar{x} \leqslant t \leqslant y \leqslant x
$$

and this shows that

$$
\langle\langle\cdots\rangle|=\left|\left(1-\kappa_{3}\right)-\left(1 \cdots-\kappa_{1}\right) \frac{\varphi_{1}(t)}{\varphi_{1}(\xi)}\right| \leqslant 3
$$

Furthermore, $\{\cdots\} \leqslant \lambda_{1}^{1-\kappa_{1}}(x)\left(\lambda_{3}(x)-\lambda_{3}(t)\right)^{\kappa_{3}-1}\left(1 / \varphi_{1}(t)\right)$ and it follows from (6) that

$$
\left|\frac{d}{d t}\{\cdots\}\right| \leqslant 3 \lambda_{1}^{1-\kappa_{1}}(x)\left(\lambda_{3}(x)-\lambda_{3}(t)\right)^{\kappa_{3}-1} \frac{\lambda_{3}^{\prime}(t)}{\lambda_{1}(t)}\left(\frac{\Lambda_{1}(t)}{\Lambda_{3}(t)} \frac{\lambda_{3}(t)}{\lambda_{3}(x)-\lambda_{3}(t)}+1\right)
$$

We wish to show that $\psi(t)=\left(\Lambda_{1}(t) / \Lambda_{3}(t)\right) \lambda_{3}(t) \leqslant 4\left(\lambda_{3}(x)-\lambda_{3}(t)\right)$, for $\bar{x} \leqslant t \leqslant x_{1}{ }^{*}$, and we observe that $\psi(x) \leqslant 2 f_{1}(x) \leqslant 2\left(\lambda_{3}(x)-\lambda_{3}(t)\right)$ by (30). Hence, we need only discuss the case $\psi \downarrow$ and $\lambda_{3}(x)--\lambda_{3}(t) \leqslant \psi(t)$, say. It follows from $0<\tilde{\psi}(\tau)=\psi\left(\bar{\lambda}_{3}(\tau)\right) \downarrow$ that $!\tilde{\psi}^{\prime} \left\lvert\, \leqslant \frac{1}{2}\right.$, and then (for that t)

$$
\psi(t)-\psi(x)=\tilde{\psi}\left(\lambda_{3}(t)\right)-\tilde{\psi}\left(\lambda_{3}(x)\right) \leqslant \frac{1}{2}\left(\lambda_{3}(x)-\lambda_{3}(t)\right) \leqslant \frac{1}{2} \psi(t)
$$

i.e.,

$$
\psi(t) \leqslant 2 \psi(x) \leqslant 4\left(\lambda_{3}(x)-\lambda_{3}(t)\right)
$$

Using this result on ψ we have

$$
\begin{equation*}
\left|\frac{d}{d t}\{\cdots\}\right| \leqslant 15 \lambda_{1}^{1-\kappa_{1}}(x)\left(\lambda_{3}(x)-\lambda_{3}(t)\right)^{\kappa_{3}-1} \frac{\lambda_{3}{ }^{\prime}(t)}{\lambda_{1}(t)} \quad \text { for } \quad \bar{x} \leqslant t \leqslant x_{1}{ }^{*} \tag{32}
\end{equation*}
$$

It follows from (31) and (32) that

$$
\begin{aligned}
\left|I_{2}\right| \leqslant & 2 e^{32} \varphi_{1}^{-\kappa_{1}}(x)\left(\lambda_{3}^{\prime}(x) A_{1}(x)\right)^{\kappa_{3}-\kappa_{1}}\left(\left|A_{\lambda_{1}}^{\kappa_{1}}\left(x, x_{1}^{*}\right)\right|+\left|A_{\lambda_{1}}^{\kappa_{1}}(x, \bar{x})\right|\right) \\
& +15 \lambda_{1}^{1-\kappa_{1}}(x) \int_{\bar{x}}^{x_{1}^{*}}\left(\lambda_{3}(x)-\lambda_{3}(t)\right)^{\kappa_{3} \cdot 1} \frac{\lambda_{3}^{\prime}(t)}{\lambda_{1}(t)}\left(\mid A_{\lambda_{1}}^{\kappa_{1}}(x, t)+A_{\lambda_{1}}^{\kappa_{1}}(x, \bar{x})_{1}\right) d t
\end{aligned}
$$

and it follows from (21) (with $\eta=x$ or $\eta=t$) that

$$
\left|I_{2}\right| \leqslant 4 e^{32}\left(\lambda_{3}^{\kappa_{3}} \frac{V_{1}}{\lambda_{1}^{\kappa_{1}}}\left(\frac{\Lambda_{1}}{\Lambda_{3}}\right)^{\kappa_{3}}\left\{\int_{0}^{x}\left(\lambda_{3}(x)-\lambda_{3}(t)\right)^{\kappa_{3}-1} \lambda_{3}^{\prime}(t) \frac{V_{1}(t)}{\lambda_{1}^{\kappa_{1}}(t)} d t\right)\right.
$$

Theorem T. Suppose that $\left(17_{1}\right)$ holds, that

$$
0<\kappa_{3} \leqslant \kappa_{1} \leqslant 1, \quad A \in M, \quad A_{1} \leqslant \Lambda_{3}
$$

and that λ_{2}, V_{2} and V satisfy

$$
\begin{equation*}
\Lambda_{2}^{\kappa_{1}-\kappa_{3}} \sim \Lambda_{1}^{\kappa_{1}} V^{-1} \Lambda_{3}^{-\kappa_{3}}, \quad \Lambda_{1} \dot{\geqslant} \Lambda_{2} \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{V_{2}}{\lambda_{2}^{k_{3}}} \Lambda_{2}^{\kappa_{1}} \sim \frac{V_{1}}{\lambda_{1}^{\kappa_{1}}} \Lambda_{1}^{\kappa_{1}} \tag{34}
\end{equation*}
$$

Then there is a mumerical constant $K_{3}>0$ such that $\left|A_{\lambda_{1}}^{\kappa_{1}}\right| \leqslant V_{1},\left|A_{\lambda_{2}}^{K_{3}}\right| \leqslant V_{2}$ imply

$$
\begin{equation*}
\left|A_{\lambda_{3}}^{\kappa_{3}}\right| \leqslant K_{3} V_{3}, \quad V_{3}=\lambda_{3}^{\kappa_{3}} \frac{V_{1}}{\lambda_{1}^{\kappa_{1}}} V+\int_{0}^{x}\left(\lambda_{3}(x)-\lambda_{3}(t)\right)^{\kappa_{3}-1} \lambda_{3}^{\prime}-\frac{V_{1}}{\lambda_{1}^{\kappa_{1}}} d t \tag{35}
\end{equation*}
$$

if V_{3} satisfies $\left(17_{3}\right)$. If $\Lambda_{3}=\Lambda_{1}$, then the integral in (35) may be omitted.
Proof. Let

$$
A_{\lambda_{3}}^{\kappa_{3}}=\left(\int_{0}^{x_{1}^{*}}+\int_{x_{1}^{*}}^{x_{2} 2^{*}}+\int_{x_{2} *}^{x}\right)(\cdots) d t=I_{1}+I_{2} \div I_{3}
$$

(note that $x_{1}{ }^{*} \leqslant x_{2}{ }^{*}$ by (33)). It follows from (33) that $2 V \geqslant\left(\Lambda_{1} / \Lambda_{3}\right)^{\kappa_{3}}$; therefore, by Theorem 2 (including Remark) we need only discuss I_{2} and I_{3}. In what follows, c_{1}, c_{2}, \ldots, are numerical constants. Writing

$$
\begin{aligned}
I_{2}= & \int_{x_{1}{ }^{*}}^{x_{2}^{*}}\left(\lambda_{1}(x)-\lambda_{1}(t)\right)^{\kappa_{1}-1} \\
& \times \lambda_{1}^{\prime}(t) A(t)\left(\frac{\lambda_{3}(x)-\lambda_{3}(t)}{\lambda_{1}(x)-\lambda_{1}(t)}\right)^{\kappa_{1}-1}\left(\lambda_{3}(x)-\lambda_{3}(t)\right)^{\kappa_{3}-\kappa_{1}} \frac{d t}{p_{1}(t)},
\end{aligned}
$$

we obtain from (25), (15) and (24) an estimate

$$
\left|I_{2}!\leqslant c_{1}\left(\lambda_{3}(x)-\lambda_{3}\left(x_{2}^{*}\right)\right)^{\kappa_{3}-\kappa_{1}} \varphi_{1}^{-\kappa_{1}}(x) \sup _{0 \leqslant \xi \leqslant x}\right| A_{\lambda_{1}}^{\kappa_{1}}(x, \xi) \mid
$$

We have $\lambda_{3}(x)-\lambda_{3}\left(x_{2}{ }^{*}\right)=f_{2}(x) \geqslant \frac{1}{2} \lambda_{3}(x)\left(\Lambda_{2}(x) / \Lambda_{3}(x)\right)$ (cf. (30)), hence

$$
\left.\left|I_{2}\right| \leqslant c_{2} \lambda_{3}^{\kappa_{3}} \frac{\Lambda_{1}^{\kappa_{1}}}{\Lambda_{3}^{\kappa_{3}} \Lambda_{2}^{\kappa_{1}-\kappa_{3}}} \sup _{0 \leqslant \xi \leqslant x} \right\rvert\, A_{\lambda_{1}}^{\kappa_{1}}(x, \xi)!\frac{1}{\lambda_{1}^{\kappa_{1}}},
$$

and the required estimate of I_{2} follows from (33) and (21) ($\eta=x$). Prior to the discussion of I_{3} we note that V_{2} satisfies $\left(17_{2}\right)$ (with $\kappa_{2}=\kappa_{3}$) since V_{1} satisfies $\left(17_{1}\right)$. This is a consequence of

$$
\lambda_{2}^{1-\kappa_{3}} V_{2} \sim \lambda_{2} \frac{V_{1}}{\lambda_{1}^{\kappa_{1}}}\left(\frac{\Lambda_{1}}{\Lambda_{2}}\right)^{\kappa_{1}} \quad \text { and } \quad \lambda_{2} \geqslant c_{3} \lambda_{1}
$$

Writing

$$
I_{3}=\int_{x_{3^{*}}}^{x^{*}}\left(\lambda_{2}(x)-\lambda_{2}(t)\right)^{\kappa_{3}-1} \lambda_{2}{ }^{\prime}(t) A(t)\left(\frac{\lambda_{3}(x)-\lambda_{3}(t)}{\lambda_{2}(x)-\lambda_{2}(t)}\right)^{n_{3}-1} \frac{d t}{\varphi_{2}(t)}
$$

we obtain from (25) ($a=1$), (15) and (24) an estimate

$$
I_{3}\left|\leqslant c_{4} \varphi_{2}^{-\kappa_{3}}(x) \sup _{0 \leqslant \leqslant \leqslant x}\right| A_{\lambda_{2}}^{\kappa_{3}}(x, \xi) \mid
$$

and the required estimate of I_{3} follows from (21) $(\eta=x)$, (34) and (33).
Remarks on Theorem T.

1. If (34) is replaced by $\left(V_{2} / \lambda_{2}^{\kappa_{3}}\right) \Lambda_{2}^{\kappa_{1}} \leqslant c\left(V_{1} / \lambda_{1}^{\kappa_{1}}\right) \Lambda_{1}^{\kappa_{1}}$ for some $c \geqslant 1$, then (35) holds with $c K_{3}$ in place of K_{3}.
2. If all the assumptions of Theorem T except $\Lambda_{1} \equiv \Lambda_{2}$ are satisfied, then Theorem A_{2} may be used to derive from $\left|A_{\lambda_{2}}^{K_{3}}\right| \leqslant V_{2}$ an estimate $\left|A_{\lambda_{1}}^{\kappa_{3}}\right| \leqslant \tilde{V}_{2}$ which can serve as a Tauberian condition (case $\lambda_{2}=\lambda_{1}, \tilde{V}_{2}$ in place of V_{2}). A short calculation shows that $\left(\tilde{V}_{2} / \lambda_{1}^{\kappa_{3}}\right) \Lambda_{1}^{\kappa_{1}} \leqslant\left(V_{1} / \lambda_{1}^{\kappa_{1}}\right) \Lambda_{1}^{\kappa_{1}}$ holds, and we have $V \leqslant\left(\Lambda_{1} / \Lambda_{3}\right)^{\kappa_{3}}$. This remark leads to the following corollary of Theorem T :

Suppose that the assumptions of Theorem T with the exception of $\Lambda_{1} \geqslant \Lambda_{2}$ are satisfied, and that in addition $\left(17_{2}\right)$ holds. Then $\left|A_{\lambda_{1}}^{\kappa_{1}}\right| \leqslant V_{1},\left|A_{\lambda_{2}}^{\kappa_{3}}\right| \leqslant V_{2}$ imply (for a numerical constant K_{4})

$$
\begin{gather*}
\left|A_{\lambda_{3}}^{\kappa_{3}}\right| \leqslant K_{4} V_{3}, \tag{36}\\
V_{3}=\left(V+\left(\frac{\Lambda_{1}}{A_{3}}\right)^{\kappa_{3}}\right) \lambda_{3}^{\kappa_{3}} \frac{V_{1}}{\lambda_{1}^{\kappa_{1}}}+\int_{0}^{x}\left(\lambda_{3}(x)-\lambda_{3}(t)^{\kappa_{3}-1} \lambda_{3}{ }^{\prime} \frac{V_{1}}{\lambda_{1}^{\kappa_{1}}} d t\right.
\end{gather*}
$$

if V_{3} of (36) satisfies $\left(17_{3}\right)$.
3. Using (33) and (34) we can express V by the remaining quantities, and we find

$$
\begin{equation*}
\lambda_{3}^{\kappa_{3}} \frac{V_{1}}{\lambda_{1}^{\kappa_{1}}} V \sim \lambda_{3}^{\kappa_{3}}\left(\frac{V_{1}}{\lambda_{1}^{\kappa_{1}}} \Lambda_{1}^{\kappa_{1}}\right)^{\kappa_{3} / \kappa_{1}}\left(\frac{V_{2}}{\lambda_{2}^{\kappa_{3}}}\right)^{1 \cdot \kappa_{3} / /_{1}} \Lambda_{3}^{-\kappa_{3}} \tag{37}
\end{equation*}
$$

4. It would seem from the discussion of Theorem T in the introduction that only the cases $1 \leqslant V \leqslant \Lambda_{1}^{\kappa_{1}} / \Lambda_{3}^{\kappa_{3}}$ are of interest, since in the other cases (35) would follow from $\left|A_{\lambda_{1}}^{\kappa_{1}}\right| \leqslant V_{1}$ by Theorems C or L. Basically, this is the case when $A \in S$. But when $A \notin S, \kappa_{3}<\kappa_{1}$, then Theorems C or L are no longer valid, and in this case Theorem T is also of interest for other functions V.
5. Compared with Theorem T, Theorem $C-M$ restricts itself to the case $\Lambda_{2}=\Lambda_{1}$, and in its proof a term corresponding to I_{2} does not appear. Thus, the influence of V_{1} and V_{2} is not balanced in a maximal way.

3. Combinations of the Abelian and Tauberian Theorems

We wish to use the relations (12) and (13) $\left(\lambda=V_{i} / \lambda_{i}^{\kappa_{i}}\right)$, and this gives reason to introduce the conditions

$$
\begin{array}{ll}
V_{i} / \lambda_{i}^{\kappa_{i}}>\lambda_{3}^{\delta_{i}-1}, & \text { for some } \quad \delta_{i}>0 \\
V_{i} / \lambda_{i}^{\kappa_{i}}<\lambda_{3}^{\Delta_{i}}, & \text { for some } \quad \Delta_{i} \tag{i}
\end{array}
$$

By combining the results of the previous section we first prove Theorems C, L, $L C$.

Thforem C. Suppose that $\left(17_{1}\right)$ and $\left(38_{1}\right)$ hold, that $\Lambda_{1} \leqslant \Lambda_{3}$, and that either

$$
0 \leqslant \kappa_{1} \leqslant \kappa_{3} \leqslant 1, \quad A \in M,
$$

or

$$
\begin{gathered}
0 \leqslant \kappa_{3}<\kappa_{1} \leqslant 1, \quad A \in S, \quad \Lambda_{1}^{\kappa_{1}} \leqslant \Lambda_{3}^{\kappa_{3}}, \\
\Lambda_{1} \geqslant \alpha, \quad V_{1}(x+1) \leqslant c V_{1}(x) \quad(\text { for constants } \alpha>0, c>0)
\end{gathered}
$$

Then

$$
\begin{equation*}
\left|A_{\lambda_{1}}^{\kappa_{1}}\right| \leqslant V_{1} \text { implies }\left|A_{\lambda_{3}}^{\kappa_{3}}\right| \leqslant K_{5} V_{3}, \quad V_{3}=\lambda_{3}^{\kappa_{3}}\left(V_{1} / \lambda_{1}^{\kappa_{1}}\right) \tag{40}
\end{equation*}
$$

where K_{5} depends (at most) on $\kappa_{3}, \alpha, c, \delta_{1}, \epsilon_{1}$.
Proof. We may assume that $\kappa_{3}>0$ (use Theorem A_{3} if $\kappa_{3}=0$), and we note that V_{3} then satisfies $\left(17_{3}\right)$ because of $\left(38_{1}\right)$. If $\kappa_{3}=\kappa_{1}$, then we use Theorem $T\left(\lambda_{2}=\lambda_{1}, V_{2}=V_{1}\right)$, and (40) follows from $V \sim\left(\Lambda_{1} / A_{3}\right)^{\kappa_{3}} \leqslant 1$ and (13). This result is the second theorem of consistency, and the case $\kappa_{3}>\kappa_{1}$ follows from a combination of this second theorem of consistency and Theorem A_{1}.

If $\kappa_{3}<\kappa_{1}$, then $\left|A_{\lambda_{1}}^{\kappa_{1}}\right| \leqslant V_{1}$ implies $\left|A_{\lambda_{1}}^{\kappa_{3}}\right| \leqslant K_{1} \lambda_{1}^{\kappa_{3}}\left(V_{1} / \lambda_{1}^{\kappa_{1}}\right) \Lambda_{1}^{\kappa_{1}-\kappa_{3}}$ by Theorem A_{3}, and it follows from this estimate and Theorem A_{2} that $\left|A_{\lambda_{2}}^{\kappa_{3}}\right| \leqslant V_{2}=5 K_{1} \lambda_{2}^{\kappa_{3}}\left(V_{1} / \lambda_{1}^{\kappa_{1}}\right)\left(\Lambda_{1}^{\kappa_{1}} / \Lambda_{2}^{\kappa_{3}}\right)$ for $\Lambda_{2} \leqslant \Lambda_{1}$, and we use this estimate for $\Lambda_{2}=\alpha$. We now apply Theorem T and Remark $1\left(V \sim\left(\Lambda_{1}^{\kappa_{1}} / \Lambda_{3}^{\kappa_{3}}\right) \alpha^{\kappa_{3}-\kappa_{1}} \leqslant\right.$ $\alpha^{\kappa_{3} \omega_{1}}$), and (40) follows from (35) and (13).

Theorem L. Suppose that $\left(17_{1}\right)$ and $\left(38_{1}\right)$ hold, and that

$$
\begin{array}{r}
0 \leqslant \kappa_{3}<\kappa_{1} \leqslant 1, \quad A \in S, \quad \Lambda_{1} \geqslant \alpha, \Lambda_{1}^{\kappa_{1}} \pm \Lambda_{3}^{\kappa_{3}}, \quad V_{1}(x+1) \leqslant c V_{1}(x) \\
(\alpha>0, c \geqslant 0, \text { constant }) .
\end{array}
$$

Then

$$
\begin{equation*}
\left|A_{\lambda_{1}}^{\kappa_{1}}\right| \leq V_{1} \quad \text { implies } \quad\left|A_{\lambda_{3}}^{\kappa_{3}}\right| \leqslant K_{6} V_{3}, \quad V_{3}=\lambda_{3}^{\kappa_{3}} \frac{V_{1}}{\lambda_{1}^{\kappa_{1}}} \frac{\Lambda_{1}^{\kappa_{1}}}{\Lambda_{3}^{\kappa_{3}}} \tag{41}
\end{equation*}
$$

where K_{6} depends (at most) on $\kappa_{3}, \alpha, c, \delta_{1}$.
Proof. We may assume that $\kappa_{3}>0$ (use Theorem A_{3} if $\kappa_{3}=0$), and we note that V_{3} then satisfies $\left(17_{3}\right)$ because of $\left(38_{1}\right)$. If $A_{1} \leqslant A_{3}$, then (41) follows from Theorem T in exactly the same way as (40) did (we now have $V \asymp \Lambda_{1}^{\kappa_{1}} / \Lambda^{\kappa_{3}} \geqslant 1$), and (41) follows for $\Lambda_{1} \geqslant \Lambda_{3}$ from Theorems A_{3}, A_{2} (cf. the proof of Theorem C).

Theorem LC. Suppose that (171) holds, and that

$$
0 \leqslant \kappa_{1} \leqslant \kappa_{3} \leqslant 1, \quad A \in M, \quad \Lambda_{3} \leqslant A_{1} .
$$

Then

$$
\begin{equation*}
\left|A_{\lambda_{1}}^{\kappa_{1}}\right| \leqslant V_{1} \quad \text { implies } \quad\left|A_{\lambda_{3}}^{\kappa_{3}}\right| \leqslant K_{7} V_{3}, \quad V_{3}=\lambda_{3}^{\kappa_{3}} \frac{V_{1}}{\lambda_{1}^{\kappa_{1}}}\left(\frac{\Lambda_{1}}{A_{3}}\right)^{\kappa_{1}} \tag{42}
\end{equation*}
$$

where K_{7} depends (at most) on κ_{3}, ϵ_{1}.
Proof. We have already pointed out in the introduction, that (42)follows from a combination of Theorems A_{1}, A_{2}.

In Theorems C and L we have used the condition (38 $)$ in order to replace the integral in (35) by $\lambda_{3}^{\kappa_{3}}\left(V_{1} / \lambda_{1}^{\kappa_{1}}\right)$. If also (39) holds, then this is sharp by (12), and one expects best estimates. On the other hand, if (391) does not hold, then we must retain the integral in (35) if we want sharp results. Theorems A_{1}, A_{2}, A_{3} and T are general enough to furnish the corresponding results. This remark also applies to the following theorems (where the fact, that no integral appears in (35) whenever $\Lambda_{1} \doteq \Lambda_{3}$ is important in some cases).

If, on the other hand, $V_{1} / \lambda_{1}^{\kappa_{1}}$ is rather small and does not satisfy (381), then it follows from (12) that the integral in (35) may be replaced by $\lambda_{3}^{\kappa_{3}-1}(x) \int_{0}^{x} \lambda_{3}{ }^{\prime}\left(V_{1} / \lambda_{1}^{\kappa_{1}}\right) d t$, and it is also possible in this case to prove the results corresponding to (40) and (41).

The following theorems are of Tauberian nature.
Theorem 3. Suppose that $\left(17_{1}\right),\left(17_{2}\right)$ and $\left(38_{1}\right),\left(38_{2}\right)$ hold, and that

$$
0 \leqslant \kappa_{2} \leqslant \kappa_{3}<\kappa_{1} \leqslant 1, \quad A \in M .
$$

Then $\left|A_{\lambda_{1}}^{\kappa_{1}}\right| \leqslant V_{1},\left|A_{\lambda_{2}}^{K_{2}}\right| \leqslant V_{2}$ imply $\left|A_{\lambda_{3}}^{\kappa_{3}}\right| \leqslant K_{8} V_{3}$,

$$
\begin{align*}
V_{3}= & \lambda_{3}^{\kappa_{3}} \frac{V_{1}}{\lambda_{1}^{\kappa_{1}}}\left(1+\left(\frac{\Lambda_{1}}{\Lambda_{3}}\right)^{\kappa_{3}}\right) \\
& +\lambda_{3}^{\kappa_{3}}\left(\frac{V_{1}}{\lambda_{1}^{\kappa_{1}}} \Lambda_{1}^{\kappa_{1}}\right)^{\left(\kappa_{3}-\kappa_{2}\right) /\left(\kappa_{1}-\kappa_{2}\right)}\left(\frac{V_{2}}{\lambda_{2}^{\kappa_{2}}} \Lambda_{2}^{\kappa_{2}}\right)^{\left(\kappa_{1}-\kappa_{3}\right) /\left(\kappa_{1}-\kappa_{2}\right)} \Lambda_{3}^{-\kappa_{3}} \\
& +\lambda_{3}^{\kappa_{3}}\left(\frac{V_{1}}{\lambda_{1}^{\kappa_{1}}} \Lambda_{1}^{\kappa_{1}}\right)^{\kappa_{3} / \kappa_{1}}\left(\frac{V_{2}}{\lambda_{2}^{\kappa_{2}}}\right)^{1-\kappa_{3} / \kappa_{1}} \Lambda_{3}^{-\kappa_{3}}, \tag{43}
\end{align*}
$$

where K_{8} depends (at most) on $\kappa_{3}, \delta_{1}, \delta_{2}, \epsilon_{2}$.
Before we turn to the proof we indicate its main idea by the following diagrams:

Diagram 6.

Diagram 7.

If $\Lambda_{1} \leqslant \Lambda_{3}$, then we move from $\left(\lambda_{2}, \kappa_{2}\right)$ to $\left(\tilde{\lambda}_{2}, \kappa_{3}\right)$ with an Abelian Theorem ($\tilde{\lambda}_{2}$ is determined by (33) and (34)), and then we apply Theorem T. This Abelian Theorem may be C or $L C$, and we combine both theorems (for this case) into

$$
\left|A_{\tilde{\lambda}_{2}}^{\kappa_{3}}\right| \leqslant C \tilde{\lambda}_{2}^{\kappa_{3}} \frac{V_{2}}{\lambda_{2}^{\kappa_{2}}}\left(1+\left(\frac{\Lambda_{2}}{\widetilde{\Lambda}_{2}}\right)^{\kappa_{2}}\right)=\tilde{V}_{2}
$$

where $C \geqslant 1$ depends (at most) on $\kappa_{3}, \epsilon_{2}, \delta_{2}$. If $A_{1}>\Lambda_{3}$, then we use the preceding part with $\Lambda_{1} \doteq \Lambda_{3}$ in order to obtain an estimate $\left|A_{\lambda_{1}}^{\kappa_{3}}\right| \leq V_{1}^{*}$, and we move from this estimate to the estimate of $A_{\lambda_{3}}^{\kappa_{3}}$ by Theorem A_{2}.

Proof of Theorem 3. We may assume that $\kappa_{3}>0$ (for $\kappa_{3}=0$ the third term of (43) is V_{2}). Assume first that $\Lambda_{1} \leqslant \Lambda_{3}$. Let

$$
H=\frac{V_{1}}{\lambda_{1}^{\kappa_{1}}} \Lambda_{1}^{\kappa_{1}} / \frac{V_{2}}{\lambda_{2}^{\kappa_{2}}} \Lambda_{2}^{\kappa_{1}}
$$

and let (cf. footnote 8)
(i) $\begin{cases}\tilde{\Lambda}_{2} \sim \Lambda_{2} H^{1 /\left(\kappa_{1}-\kappa_{2}\right)} & \text { if } H<1, \\ \tilde{\Lambda}_{2}=\Lambda_{1} & \text { if } H \geqslant 1, \Lambda_{1} \leqslant \Lambda_{2},\end{cases}$
(ii) $\widetilde{\Lambda}_{2} \sim \min \left(\Lambda_{2} H^{1 / \kappa_{1}}, \Lambda_{1}\right) \quad$ if $H \geqslant 1, \Lambda_{1} \therefore A_{2}$.

In case (i) we have $\Lambda_{2} / \widetilde{\Lambda_{2}} \geqslant \frac{1}{2}, \widetilde{\Lambda}_{2}^{\kappa_{1}-\kappa_{2}} \leqslant 2 \Lambda_{2}^{\kappa_{1}-\kappa_{2}} H$, and in case (ii) we have $\Lambda_{2} / \widetilde{\Lambda}_{2} \leqslant 2, \tilde{\Lambda}_{2}^{\kappa_{1}} \leqslant 2 A_{2}^{\kappa_{1}} H$.

In case (i) we have

$$
\begin{aligned}
\frac{\tilde{V}_{2}}{\tilde{\lambda}_{2}^{\kappa_{3}}} \tilde{\Lambda}_{2}^{\kappa_{1}} & =C \frac{V_{2}}{\lambda_{2}^{\kappa_{2}}} \tilde{\Lambda}_{2}^{\kappa_{1}}\left(1+\left(\frac{\Lambda_{2}}{\tilde{\Lambda}_{2}}\right)^{\kappa_{2}}\right) \\
& \leqslant 3 C \frac{V_{2}}{\lambda_{2}^{\kappa_{2}}} \tilde{\Lambda}_{2}^{\kappa_{1}-\kappa_{2}} \Lambda_{2}^{\kappa_{2}} \leqslant 6 C \frac{V_{2}}{\lambda_{2}^{\kappa_{2}}} \Lambda_{2}^{\kappa_{1}} H=6 C \frac{V_{1}}{\lambda_{1}^{\kappa_{1}}} \Lambda_{1}^{\kappa_{1}}
\end{aligned}
$$

and (36) $\left(V=\Lambda_{1}^{\kappa_{1}} \Lambda_{3}^{-\kappa_{3}} \Lambda_{2}^{\kappa_{3}-\kappa_{1}} H^{\left(\kappa_{3}-\kappa_{1}\right) /\left(\kappa_{1}-\kappa_{2}\right)}\right.$ or $\left.V=\left(\Lambda_{1} / \Lambda_{3}\right)^{\kappa_{3}}\right)$ and (13) yield the first and second term of (43).

In case (ii) we have

$$
\frac{\tilde{V_{2}}}{\tilde{\lambda}_{2}^{\kappa_{3}}} \tilde{\Lambda}_{2}^{\kappa_{1}} \leqslant 3 C \frac{V_{2}}{\lambda_{2}^{\kappa_{2}}} \tilde{\Lambda}_{2}^{\kappa_{1}} \leqslant 6 C \frac{V_{2}}{\lambda_{2}^{\kappa_{2}}} \Lambda_{2}^{\kappa_{1}} H=6 C \frac{V_{1}}{\lambda_{1}^{\kappa_{1}}} \Lambda_{1}^{\kappa_{1}}
$$

and (36) and (13) yield the first and third term of (43).
If $\Lambda_{1}>\Lambda_{3}$, then it follows from the part of Theorem 3 which has already been proven that $\left|A_{\lambda_{1}}^{\kappa_{3}}\right| \leqslant V_{1}^{*}$, where $V_{1}{ }^{*}$ is V_{3} of (43) with $\Lambda_{3}=\Lambda_{1}$. We apply Theorem A_{2} (note that $V_{1}{ }^{*}$ satisfies (17 $)$) and obtain $\left|A_{\lambda_{3}}^{\kappa_{3}}\right| \leqslant$ $5 \lambda_{3}^{\kappa_{3}}\left(V_{1}{ }^{*} / \lambda_{1}^{\kappa_{3}}\right)\left(\Lambda_{1} / \Lambda_{3}\right)^{\kappa_{3}}$, and this proves (43).

Theorem 4. Suppose that $\left(17_{1}\right),\left(17_{2}\right)$ and $\left(38_{1}\right),\left(38_{2}\right)$ hold, and that

$$
\begin{array}{r}
0 \leqslant \kappa_{3}<\kappa_{1} \leqslant 1, \quad \kappa_{3}<\kappa_{2} \leqslant 1, \quad A \in S, \quad A_{2} \geqslant \alpha, \quad V_{2}(x+1) \leqslant c V_{2}(x) \\
(\alpha>0, c>0, \text { constant })
\end{array}
$$

Then $\left|A_{\lambda_{1}}^{\kappa_{1}}\right| \leqslant V_{1},\left|A_{\lambda_{2}}^{K_{2}}\right| \leqslant V_{2}$ imply $\left|A_{\lambda_{3}}^{K_{3}}\right| \leqslant K_{9} V_{3}$,

$$
\begin{align*}
V_{3}= & \lambda_{3}^{\kappa_{3}} \frac{V_{1}}{\lambda_{1}^{\kappa_{1}}}\left(1+\left(\frac{\Lambda_{1}}{\Lambda_{3}}\right)^{\kappa_{3}}\right)+\lambda_{3}^{\kappa_{3}}\left(\frac{V_{2}}{\lambda_{2}^{\kappa_{2}}} \Lambda_{2}^{\kappa_{2}}\right) \Lambda_{3}^{\kappa_{3}} \\
& +\lambda_{3}^{\kappa_{3}}\left(\frac{V_{1}}{\lambda_{1}^{\kappa_{1}}} \Lambda_{1}^{\kappa_{1}}\right)^{\kappa_{3} / \kappa_{1}}\left(\frac{V_{2}}{\lambda_{2}^{\kappa_{2}}}\right)^{1-\kappa_{3} / \kappa_{1}} \Lambda_{3}^{-\kappa_{3}} \tag{44}
\end{align*}
$$

where K_{9} depends (at most) on $\kappa_{3}, \alpha, c, \delta_{2}$.

The idea of the proof is in principle the same as in Theorem 3, and it is (for $A_{1} \leqslant A_{3}$) indicated in the following diagram:

Diagram 8.

We combine the Abelian Theorems C and L (for this case) into

$$
\left|A_{\tilde{\lambda}_{2}}^{\kappa_{3}}\right| \leqslant D \check{\lambda}_{2}^{\kappa_{3}} \frac{V_{2}}{\lambda_{2}^{\kappa_{2}}}\left(1+\frac{\Lambda_{2}^{\kappa_{2}}}{\widetilde{\Lambda}_{2}^{\kappa_{3}}}\right)=\tilde{V}_{2}
$$

where $D \geqslant 1$ depends (at most) on $\kappa_{3}, \alpha, c, \delta_{2}$.
Proof of Theorem 4. We may assume that $\kappa_{3}>0$. Assume first that $A_{1} \leqslant \Lambda_{3}$, and let $H^{*}=H \Lambda_{2}^{\left(\kappa_{1} / \kappa_{3}\right)\left(\kappa_{3}-\kappa_{2}\right)}(H$ as in the proof of Theorem 3$)$. Let
(i) $\begin{cases}\tilde{\Lambda}_{2}^{\kappa_{3}} \sim \Lambda_{2}^{\kappa_{2}} H^{* \kappa_{3} /\left(\kappa_{1}-\kappa_{3}\right)}, & \text { if } H^{*} \dot{<} 1, \\ \tilde{\Lambda}_{2}=\Lambda_{1}, & \text { if } H^{*} \geqslant 1, \quad \Lambda_{1}^{\kappa_{3}} \leqslant \Lambda_{2}^{\kappa_{2}},\end{cases}$
(ii) $\widetilde{\Lambda}_{2}^{\kappa_{3}} \sim \min \left(\Lambda_{2}^{\kappa_{2}} H^{* \kappa_{3} / \kappa_{1}}, \Lambda_{1}^{\kappa_{3}}\right) \quad$ if $\quad H^{*} \geqslant 1, \quad \Lambda_{1}^{\kappa_{3}}>\Lambda_{2}^{\kappa_{2}}$.
(Cf. footnote (8); because of Theorem L we may assume $\tilde{\Lambda}_{2} \leqslant \Lambda_{3}$ if $H^{*}<1$.) In case (i) we have $\Lambda_{2}^{\kappa_{2}} / \widetilde{\Lambda}_{2}^{\kappa_{3}} \geqslant \frac{1}{2}, \widetilde{\Lambda}_{2}^{\kappa_{1}-\kappa_{3}} \leqslant 2 \Lambda_{2}^{\left(\kappa_{2} / \kappa_{3}\right)\left(\kappa_{1}-\kappa_{3}\right)} H^{*}$, and in case (ii) we have $\Lambda_{2}^{\kappa_{2}} / \widetilde{\Lambda}_{3}^{\kappa_{3}} \leqslant 2, \widetilde{\Lambda}_{2}^{\kappa_{3}} \leqslant 2 \Lambda_{2}^{\kappa_{2}} H^{\kappa_{3} / \kappa_{1}}$. We proceed as in the proof of Theorem 3. In case (i) we have

$$
\begin{aligned}
\frac{\tilde{V}_{2}}{\tilde{\lambda}_{2}^{\kappa_{3}}} \tilde{\Lambda}_{2}^{\kappa_{1}} & =D \frac{V_{2}}{\lambda_{2}^{\kappa_{2}}} \tilde{\Lambda}_{2}^{\kappa_{1}}\left(1+\frac{\Lambda_{2}^{\kappa_{2}}}{\tilde{\Lambda}_{2}^{\kappa_{3}}}\right) \\
& \leqslant 3 D \frac{V_{2}}{\lambda_{2}^{\kappa_{2}}} \tilde{\Lambda}_{2}^{\kappa_{1}-\kappa_{3}} \Lambda_{2}^{\kappa_{2}} \leqslant 6 D \frac{V_{2}}{\lambda_{2}^{\kappa_{2}}} \Lambda_{2}^{\kappa_{1}} H=6 D \frac{V_{1}}{\lambda_{1}^{\kappa_{1}}} \Lambda_{1}^{\kappa_{1}}
\end{aligned}
$$

and in case (ii) we have

$$
\frac{\tilde{V}_{2}}{\tilde{\lambda}_{2}^{\kappa_{3}}} \widetilde{\Lambda}_{2}^{\kappa_{1}} \leqslant 3 D \frac{V_{2}}{\lambda_{2}^{\kappa_{2}}} \tilde{\Lambda}_{2}^{\kappa_{1}} \leqslant 6 D \frac{V_{2}}{\lambda_{2}^{\kappa_{2}}} \Lambda_{2}^{\kappa_{1}} H=6 D \frac{V_{1}}{\lambda_{1}^{\kappa_{1}}} \Lambda_{1}^{\kappa_{1}},
$$

and (36) and (13) yield (44). The case $\Lambda_{1}>\Lambda_{3}$ follows from this result as in the proof of Theorem 3.

4. The Main Theorem

In order to simplify the formulas in Theorem 5, we introduce some abbreviations.

Denoting by $i, j, i \neq j$, the subscripts 1,2 , we define:

$$
\begin{array}{cl}
C_{i}=\frac{V_{i}}{\lambda_{i}^{\kappa_{i}}} \Lambda_{3}^{\kappa_{3}}, & L_{i}=\frac{V_{i}}{\lambda_{i}^{\kappa_{i}}} \Lambda_{i}^{\kappa_{i}}, \\
L C_{i}=\frac{V_{i}}{\lambda_{i}^{\kappa_{i}}}\left(\frac{\Lambda_{i}}{\Lambda_{3}}\right)^{\kappa_{i}} \Lambda_{3}^{\kappa_{3}}, & T C L_{i}=\frac{V_{i}}{\lambda_{i}^{\kappa_{i}}} \Lambda_{i}^{\kappa_{3}}, \\
K_{i}^{\mathrm{I}}=\left(L_{i}\right)^{\left(\kappa_{3}-\kappa_{j}\right) /\left(\kappa_{i}-\kappa_{j}\right)}\left(L_{j}\right)^{\left(\kappa_{i}-\kappa_{3}\right) /\left(\kappa_{i}-\kappa_{j}\right)}, & 0 \leqslant \kappa_{j} \leqslant \kappa_{3}<\kappa_{i} \leqslant 1, \\
K_{i}^{\mathrm{II}}=\left(L C_{i}\right)^{\kappa_{3} / \kappa_{i}}\left(C_{j}\right)^{1-\kappa_{3} / \kappa_{i}}, & 0 \leqslant \kappa_{3}<\kappa_{i} \leqslant 1, \\
A_{i}=\left(C_{i}+L_{i}+L C_{i}\right) \lambda_{3}^{\kappa_{3}}, \\
T_{i}^{I}=\left(C_{i}+T C L_{i}+K_{i}^{I}+K_{i}^{\mathrm{II})} \lambda_{3}^{\kappa_{3}},\right. \\
T_{i}^{I I}=\left(C_{i}+T C L_{i}+L_{j}+K_{i}^{\mathrm{II}}\right) \lambda_{3}^{\kappa_{3}}
\end{array}
$$

In Theorem 5 only $A_{i}, T_{i}^{1}, T_{i}^{11}$ appear, and these quantities are built from $C_{i}, L_{i}, L C_{i}, T C L_{i}$. When multiplied by $\lambda_{3}^{\kappa_{3}}$, the terms $C_{1}, L_{1}, L C_{1}$ are the V_{3} 's of Theorems C, L and $L C$, and A_{1} is the corresponding V_{3} in the combination of all Abelian theorems (see footnote 6). The expression $T C L_{1} \lambda_{3}^{\kappa_{3}}$ results when Theorem C, extended by Theorem T to $\Lambda_{3} \geqslant A_{1}$ (see the introduction), is applied and then followed by Theorem L (similarly to $L C_{1}$). The expressions $K^{\mathrm{I}}, K^{\mathrm{II}}$ are "convex" combinations of L 's or $L C$'s and C 's.

Theorem 5. Suppose that $\left(17_{1}\right),\left(17_{2}\right),\left(38_{1}\right),\left(38_{2}\right)$ hold, that

$$
V_{1}(x+1) \asymp V_{1}(x), \quad V_{2}(x+1) \asymp V_{2}(x), \quad \Lambda_{1} \geqslant 1, \quad A_{2} \geqslant 1, \quad A_{3} \geqslant 1,
$$

and that $A \in M$. Then $A_{\lambda_{1}}^{\kappa_{1}} \leqslant V_{1}, A_{\lambda_{2}}^{\kappa_{2}} \leqslant V_{2}$ imply $A_{\lambda_{3}}^{\kappa_{3}} \leqslant V_{3}$, where

$$
\begin{array}{ll}
V_{3}=\min \left(A_{1}, A_{2}\right), & \text { if } 0 \leqslant \kappa_{1} \leqslant \kappa_{3}, \quad 0 \leqslant \kappa_{2} \leqslant \kappa_{3} \leqslant 1, \\
V_{3}=\min \left(A_{i}, T_{j}^{\mathrm{I}}\right), & \text { if } 0 \leqslant \kappa_{i} \leqslant \kappa_{3}<\kappa_{j} \leqslant 1
\end{array}
$$

If, in addition, $A \in S$, then

$$
\begin{array}{ll}
V_{3}=\min \left(A_{1}, A_{2}, T_{j}^{\mathrm{I}}\right), & \text { if } 0 \leqslant \kappa_{i} \leqslant \kappa_{3}<\kappa_{j} \leqslant 1, \\
V_{3}=\min \left(A_{1}, A_{2}, T_{1}^{\mathrm{II}}, T_{2}^{\mathrm{I}}\right), & \text { if } 0 \leqslant \kappa_{3} \leqslant \kappa_{1} \leqslant 1, \quad \kappa_{3}<\kappa_{2} \leqslant 1
\end{array}
$$

These functions V_{3} are minimal bounds whenever (391), (3992) holds. Let the dependency of the function $V_{3}=V_{3}(x)$ upon $V_{1}=V_{1}(x), V_{2}=V_{2}(x)$ be indicated by $V_{3}=V_{3}\left[V_{1}, V_{2}\right]$. If $V_{3}\left[\epsilon V_{1}, V_{2}\right] \leqslant \gamma_{1} \epsilon^{\gamma_{2}} V_{3}\left[V_{1}, V_{2}\right]$ holds for $0<\epsilon \leqslant 1$ with fixed $\gamma_{1,2}>0$, then

$$
A_{\lambda_{1}}^{\kappa_{1}}<V_{1}, \quad A_{\lambda_{2}}^{\kappa_{2}} \leqslant V_{2} \text { imply } \quad A_{\lambda_{3}}^{\kappa_{3}}<V_{3} .
$$

Similarly, if $V_{3}\left[V_{1}, \epsilon V_{2}\right] \leqslant \gamma_{1} \epsilon^{\gamma_{2}} V_{3}\left[V_{1}, V_{2}\right]$, then

$$
A_{\lambda_{1}}^{\kappa_{1}} \leqslant V_{1}, \quad A_{\lambda_{2}}^{\kappa_{2}}<V_{2} \text { imply } \quad A_{\lambda_{3}}^{\kappa_{3}}<V_{3} .
$$

Theorems $C, L, L C, 3$ and 4 show that the estimates $A_{\lambda_{3}}^{\kappa_{3}} \leqslant V_{3}$ of Theorem 5 are true, and the statements concerning $<$ also follow from these theorems. It remains only to show that Theorem 5 gives minimal bounds, and the rest of this section is devoted to this proof.

Let $V_{\mathbf{3}}$ be one of the functions which appear in Theorem 5, and suppose that $U(x)$ is nonnegative on $(0, \infty)$, and that $V_{3} * U$. Then V_{3} is minimal, if we can find $A \in M$ or $A \in S$ such that $A_{\lambda_{1}}^{\kappa_{1}} \leqslant V_{1}, A_{\lambda_{2}}^{\kappa_{2}} \leqslant V_{2}$ and $A_{\lambda_{3}}^{\kappa_{3}} \leqslant U$. In the following we will first give the general construction of such A 's, and then we will apply it to the individual functions V_{3}.
If $V_{3} \leqslant U$, then we can find a sequence $0<x_{n}{ }^{\prime} \uparrow \infty$ such that $U\left(x_{n}{ }^{\prime}\right) / V_{3}\left(x_{n}{ }^{\prime}\right) \rightarrow 0$. In view of $\left(17_{i}\right)$ there is a subsequence $\left\{x_{n}\right\}$ of $\left\{x_{n}{ }^{\prime}\right\}$ such that

$$
\begin{gather*}
V_{i}\left(x_{n-1}\right) \lambda_{i}^{1-\kappa i}\left(x_{n-1}\right) \leqslant \frac{1}{2} V_{i}\left(x_{n}\right) \lambda_{i}^{1-\kappa_{i}}\left(x_{n}\right), \tag{45}\\
\lambda_{i}\left(x_{n-1}\right) \leqslant \frac{1}{2} \lambda_{i}\left(\bar{\lambda}_{3}\left(\frac{1}{2} \lambda_{3}\left(x_{n}\right)\right)\right), \quad i=1,2,3 . \tag{46}
\end{gather*}
$$

Let $0<f(x) \leqslant \frac{1}{2} \lambda_{3}(x), f \in L, g_{i}(x)=V_{i}(x) \max \left(\lambda_{i}^{-\kappa_{i}}(x),\left(f(x)\left(\lambda_{i}{ }^{\prime}(x) / \lambda_{3}{ }^{\prime}(x)\right)^{-\kappa_{i}}\right)\right.$, $g(x)=\min \left(g_{1}(x), g_{2}(x)\right), z(x)=\bar{\lambda}_{3}\left(\lambda_{3}(x)-f(x)\right), z_{n}=z\left(x_{n}\right)$.

Lemma 8. Suppose that $\left(17_{1}\right),\left(17_{2}\right)$ hold, that $0 \leqslant k_{v} \leqslant 1,(\nu=1,2,3)$ and that

$$
\begin{equation*}
g(x) \leqslant g(t) \quad \text { if } \quad z(x) \leqslant t \leqslant x . \tag{47}
\end{equation*}
$$

Let

$$
A(t)= \begin{cases}g\left(x_{n}\right), & \text { if } z_{n} \leqslant t \leqslant x_{n} \\ 0, & \text { otherwise }{ }^{18} .\end{cases}
$$

Then $A_{\lambda_{1}}^{\kappa_{1}}(x) \leqslant V_{1}(x), A_{\lambda_{2}}^{\kappa_{2}}(x) \leqslant V_{2}(x), A_{\lambda_{3}}^{\kappa_{3}}\left(x_{n}\right) \geqslant g\left(x_{n}\right) f^{\kappa_{3}}\left(x_{n}\right)$.
${ }^{18}$ We have $x_{n-1} \leqslant \bar{\lambda}_{3}\left(\frac{1}{4} \lambda_{3}\left(x_{n}\right)\right)<\bar{\lambda}_{3}\left(\lambda_{3}\left(x_{n}\right)-f\left(x_{n}\right)\right)$ by (46), $i=3$.

Proof. The statement on $A_{\lambda_{3}}^{\kappa_{3}}$ follows for $\kappa_{3}>0\left(\kappa_{3}=0\right.$ is trivial) from

$$
A_{\lambda_{3}}^{\kappa_{3}}\left(x_{n}\right) \geqslant g\left(x_{n}\right) \int_{z_{n}}^{x_{n}}\left(\lambda_{3}\left(x_{n}\right)-\lambda_{3}(t)\right)^{\kappa_{3}-1} \lambda_{3}{ }^{\prime}(t) d t \asymp g\left(x_{n}\right) f^{\kappa_{3}}\left(x_{n}\right)
$$

Let i be 1 or 2 , and let first $z_{n} \leqslant x \leqslant x_{n}$. It follows from Lemma 3 that

$$
\begin{equation*}
f(x) \leqslant f(t), \quad \text { if } \quad z(x) \leqslant t \leqslant x, \tag{48}
\end{equation*}
$$

and it follows from (46) and $x \geqslant z_{n} \geqslant \bar{x}_{n}$ that

$$
\frac{\lambda_{i}\left(x_{n-1}\right)}{\lambda_{i}(x)} \leqslant \frac{\lambda_{i}\left(x_{n-1}\right)}{\lambda_{i}\left(\overline{(}_{3}\left(\frac{1}{2} \lambda_{3}\left(x_{n}\right)\right)\right)} \leqslant \frac{1}{2},
$$

in particular

$$
\begin{equation*}
\lambda_{i}(x)-\lambda_{i}\left(x_{n-1}\right) \asymp \lambda_{i}(x) . \tag{49}
\end{equation*}
$$

If $\kappa_{i}=0$, then $A_{\lambda_{i}}^{\kappa_{i}}(x) \leqslant V_{i}(x)$ by (47), hence we may assume that $\kappa_{i}>0$. We have, by Lemma 6, (10), and (49),

$$
\begin{aligned}
A_{\lambda_{i}}^{\kappa_{i}}(x) \leqslant & \int_{z_{n}}^{x} g\left(x_{n}\right)\left(\lambda_{i}(x)-\lambda_{i}(t)\right)^{\kappa_{i}-1} \lambda_{i}^{\prime}(t) d t \\
& +\sum_{\nu=1}^{n-1} g\left(x_{\nu}\right)\left(\lambda_{i}(x)-\lambda_{i}\left(x_{n-1}\right)\right)^{\kappa_{i}} 1 \quad \int_{z_{v},}^{x_{v}} \lambda_{i}{ }^{\prime}(t) d t \\
\asymp & g\left(x_{n}\right) \min \left(\lambda_{i}^{\kappa_{i}}(x),\left(\left(f\left(x_{n}\right) \cdots \lambda_{3}(x)-\lambda_{3}\left(x_{n}\right)\right) \frac{\lambda_{i}^{\prime}(x)}{\lambda_{3}^{\prime}(x)}\right)^{\kappa_{i}}\right) \\
& +\left(\lambda_{i}(x)\right)^{\kappa_{i}-1} \sum_{\nu=1}^{n-1} g\left(x_{v}\right) \min \left(\lambda_{i}\left(x_{v}\right), f\left(x_{v}\right) \frac{\lambda_{i}{ }^{\prime}\left(x_{v}\right)}{\lambda_{3}^{\prime}\left(x_{v}\right)}\right) \\
\leqslant & g\left(x_{n}\right) \min \left(\lambda_{i}^{\kappa_{i}}(x),\left(f\left(x_{n}\right) \frac{\lambda_{i}{ }^{\prime}(x)}{\lambda_{3}^{\prime}(x)}\right)^{\kappa_{i}}\right) \\
& +\lambda_{i}^{\kappa_{i}-1}(x) \sum_{v=1}^{n-1} g\left(x_{v}\right) \min \left(\lambda_{i}^{\kappa_{i}}\left(x_{v}\right),\left(f\left(x_{\nu}\right) \frac{\lambda_{i}{ }^{\prime}\left(x_{\nu}\right)}{\lambda_{3}^{\prime}\left(x_{v}\right)}\right)^{\kappa_{i}}\right) \lambda_{i}^{1-\kappa_{i}}\left(x_{v}\right) .
\end{aligned}
$$

It follows from (47), (48) and the definition of g that

$$
A_{\lambda_{i}}^{\kappa_{i}}(x) \leqslant V_{i}(x)+\lambda_{i}^{\kappa_{i}-1}(x) \sum_{\nu=1}^{n-1} V_{i}\left(x_{\nu}\right) \lambda_{i}^{1-\kappa_{i}}\left(x_{\nu}\right)
$$

and $A_{\lambda}^{\kappa_{i}} \leqslant V_{i}$ follows from (17 7_{i}) and (45).
Next, let $x_{n-1}<x<z_{n-1}$ and $\kappa_{i}>0$. It follows from Theorem 1 and from the definition of A that

$$
A_{\lambda_{i}}^{\kappa_{i}}(x)=A_{\lambda_{i}}^{\kappa_{i}}\left(x, x_{n-1}\right)=\lambda_{i}^{\kappa_{i}-1}(x) A_{\lambda_{i}}^{\kappa_{i}}\left(\xi_{0}\right) \lambda_{i}^{1-\kappa_{i}}\left(\xi_{0}\right), \quad 0 \leqslant \xi_{0} \leqslant x_{n-1}
$$

If $z_{v} \leqslant \xi_{0} \leqslant x_{v}$ for some $v \leqslant n-1$, then $A_{\lambda_{i}}^{\kappa_{i}}(x) \leqslant V_{i}(x)$ follows from $\left(17_{i}\right)$ and the previous part of the proof.

If $x_{v-1}<\xi_{0}<z_{v}$ for some $\nu \leqslant n-1$, then

$$
A_{\lambda_{i}}^{\kappa_{i}}\left(\xi_{0}\right)=A_{\lambda_{i}}^{\kappa_{i}}\left(\xi_{0}, x_{v-1}\right)=\lambda_{i}^{\kappa_{i}-1}\left(\xi_{0}\right) A_{\lambda_{i}}^{\kappa_{i}}\left(\xi_{1}\right) \lambda_{i}^{1-\kappa_{i}}\left(\xi_{1}\right), \quad \xi_{1} \leqslant x_{v-1}
$$

i.e.,

$$
A_{\lambda_{i}}^{\kappa_{i}}(x)=\lambda_{i}^{\kappa_{i}=1}(x) A_{\lambda_{i}}^{\kappa_{i}}\left(\xi_{1}\right) \lambda_{i}^{1-\kappa_{i}}\left(\xi_{1}\right), \quad \xi_{1} \leqslant x_{n-2}
$$

and we proceed as before (with ξ_{1} in place of ξ_{0}). After at most n steps we obtain $A_{\lambda_{i}}^{\kappa_{i}}(x) \leqslant V_{i}(x)$ (observe $\left(17_{i}\right)$).

This proof also shows that in case $f(x)>\lambda_{3}{ }^{\prime}(x)$, in which $x_{n}-z_{n}>1$, the definition of A can be changed (slightly) to ensure $A \in S$ by using $\left[x_{n}\right]+1,\left[z_{n}\right]$ instead of x_{n}, z_{n}. In case $f\left(x_{n}\right) \asymp \lambda_{3}\left(x_{n}\right)-\lambda_{3}\left(x_{n}-1\right) \asymp \lambda_{3}{ }^{\prime}\left(x_{n}\right)$ we replace x_{n} by $\left[x_{n}\right]+1$ and z_{n} by $\left[x_{n}\right]-1$, and change (46) to

$$
\begin{equation*}
\lambda_{i}\left(\left[x_{n-1}\right]+1\right) \leqslant \frac{1}{2} \lambda_{i}\left(\frac{\left[x_{n}\right]+1}{2}\right), \quad i=1,2,3 . \tag{50}
\end{equation*}
$$

Thus, if $f(x) \geqslant \lambda_{3}{ }^{\prime}(x)$ Lemma 8 remains true with $A \in S$.
In order to apply the construction to the individual V_{3} 's of Theorem 5 we must find for each V_{3} a function f such that $g\left(x_{n}\right) f^{\kappa_{3}}\left(x_{n}\right) \asymp V_{3}\left(x_{n}\right)$. If f and g satisfy the requirements of Lemma 8 , then $A_{\lambda_{1}}^{\kappa_{1}} \leqslant V_{1}, A_{\lambda_{2}}^{\kappa_{2}} \leqslant V_{2}$ but

$$
A_{\lambda_{3}}^{\kappa_{3}}\left(x_{n}\right) \geqslant V_{3}\left(x_{n}\right)>U\left(x_{n}\right) .
$$

We choose f according to the leading term occurring in V_{3} (i.e., $C, L C, L$, $K^{1}, K^{I I}$). In this context we observe that $T C L$ need not be used since it never is the only leading term. In order to facilitate the calculations we split these four cases into eight cases as follows ($i, j, i \neq j$ are 1 and 2):

1. $V_{3} \lambda_{3}^{\prime-\kappa_{3}} \asymp C_{i} \leqslant C_{j}, \quad \Lambda_{1} \leqslant \Lambda_{3}, \quad \Lambda_{2} \leqslant \Lambda_{3} ;$
2. $V_{3} \lambda_{3}^{\prime-\kappa_{3}} \asymp C_{i} \leqslant L C_{j} \quad A_{i} \leqslant A_{3} \leqslant A_{j} ;$
3. $V_{3} \lambda_{3}^{\prime-\kappa_{3}} \asymp L C_{i} \leqslant C_{j}, \quad \Lambda_{j} \leqslant A_{3} \leqslant A_{i}$;
4. $V_{3} \lambda_{3}^{\prime-\kappa_{3}} \asymp L C_{i} \leqslant L C_{j}, \quad A_{3} \leqslant A_{1}, \quad A_{3} \leqslant \Lambda_{2}$;
5. $V_{3} \lambda_{3}^{\prime-\kappa_{3}} \asymp L_{i} \leqslant L_{j} ;$
6. $V_{3} \lambda_{3}^{\lambda-\kappa_{3}} \asymp K_{i}^{11}, \quad 1 \leqslant \Lambda_{j} \leqslant \Lambda_{j} H_{i}^{1 / k_{i}} \ll \Lambda_{i}, \quad \Lambda_{j} H_{i}^{1 / k_{i}} \leqslant \Lambda_{3}$,

$$
H_{i}=\frac{\Lambda_{3}^{\kappa_{3}} L_{i}}{\Lambda_{j}^{k_{i}} C_{j}} ;
$$

7. $V_{3} \lambda_{3}^{\prime-K_{3}} \asymp K_{i}{ }^{\prime}, \quad 1 \leqslant \Lambda_{j} H_{i}^{1 /\left(k_{i}-K_{j}\right)} \leqslant A_{v} \quad(v=1,2,3)$;
8. $\quad V_{3} \lambda_{3}^{\prime-K_{3}} \asymp K_{i}{ }^{1}, \quad \Lambda_{j} H_{i}^{1 /\left(k_{i}-\kappa_{j}\right)}<1$ and not case " $A \in S$."
(Compare cases 6, 7 and 8 with the proof of Theorem 3.)
Our claim is that every individual case of Theorem 5 is contained in at least one of these eight cases. In the simplest case of Theorem 5, viz. $0 \leqslant \kappa_{1} \leqslant \kappa_{3}, 0 \leqslant \kappa_{2} \leqslant \kappa_{3} \leqslant 1$, we find that $V_{3} \lambda_{3}^{\prime-\kappa_{3}}$ is given by C_{i} or $L C_{i}$ and that only the cases 1,2 resp. 3, 4 are possible. The discussion of all other cases is rather lengthy, but represents no difficulty and is, therefore, omitted. If

$$
\begin{array}{ll}
f(x)=\frac{1}{2} \lambda_{3}(x), & \text { in cases } 1,2,3,4 \\
f(x)=K \lambda_{3}{ }^{\prime}(x), & \text { in case } 5, \\
f(x)=K \Lambda_{j} H_{i}^{1 / \kappa_{i}} \lambda_{3}^{\prime}(x), & \text { in case } 6, \\
f(x)=K \Lambda_{j} H_{i}^{\left.1 / \kappa_{i}-\kappa_{j}{ }^{\prime}\right)} \lambda_{3}^{\prime}(x), & \text { in cases } 7 \text { and } 8,
\end{array}
$$

where K in each case is chosen such that $f(x) \leqslant \frac{1}{2} \lambda_{3}(x)$ (observe that $\Lambda_{3} \geqslant 1$), then the relation involving V_{3} in cases 1-8 is satisfied, and it only remains to show that (47) holds. This can be done as follows.
Observe first that $g=g_{i}$ for $i=1$ or 2 . Next, observe that

$$
\begin{equation*}
V_{i}(t) / \lambda_{i}^{\kappa_{i}}(t) \asymp V_{i}(x) / X_{i}^{\kappa_{i}}(x), \tag{51}
\end{equation*}
$$

by ($38_{\mathrm{i}} \mathrm{i},\left(39_{\mathrm{i}}\right.$) and Lemma 3. Also (by Lemma 3)

$$
\begin{equation*}
\frac{\Lambda_{i}(x)}{\Lambda_{3}(x)} \lambda_{3}(x) \leqslant \frac{\Lambda_{i}(t)}{\Lambda_{3}(t)} \lambda_{3}(t), \tag{52}
\end{equation*}
$$

since $\left(\Lambda_{i}(x) / \Lambda_{3}(x)\right) \lambda_{3}(x) \leqslant \lambda_{3}{ }^{2}(x)$. This shows that (47) holds when $f(x)=$ $\frac{1}{2} \lambda_{3}(x)$. If $f=K \lambda_{3}{ }^{\prime}(x)$, then

$$
f(x)=K \lambda_{3}{ }^{\prime}(x) \leqslant \lambda_{3}(x) \min \left(\frac{1}{2}, c \frac{\left|\lambda_{3}{ }^{\prime}(x) / \lambda_{3}^{\prime \prime}(x)\right|}{\Lambda_{3}(x)}\right), \quad c>0^{19} .
$$

${ }^{19}$ Observe that $\Lambda_{3} \geqslant 1$, and this implies $\lambda_{3}{ }^{\prime} \lambda_{3}^{\prime \prime} \leqslant \lambda_{3} / \lambda_{3}{ }^{\prime}$.

It follows from Lemma $2\left(\lambda=\lambda_{3}\right)$ and the Remark after Lemma 2 that $\lambda_{3}{ }^{\prime}(t) \asymp \lambda_{3}{ }^{\prime}(x)$ if $0 \leqslant \lambda_{3}(x)-\lambda_{3}(t) \leqslant f(x)$, i.e., $z(x) \leqslant t \leqslant x$. This shows that (47) holds when $f=K \lambda_{3}{ }^{\prime}(x)$.

If $f(x)=K \Lambda_{j} H_{i}^{1 / \kappa_{i}} \lambda_{3}{ }^{\prime}(x)$, then $g \asymp V_{j} / \lambda_{j}^{\kappa_{j}}$, and (47) follows from (51).
Finally, if $f=K \Lambda_{i} H_{i}^{1 /\left(\kappa_{i}-\kappa_{j}\right)} \lambda_{3}{ }^{\prime}$, then $f(x) \leqslant \lambda_{3}(x) \min \left(\frac{1}{2}, c\left(\Lambda_{v}(x) / \Lambda_{3}(x)\right)\right.$), $\nu=1,2,3$. We have

$$
f(t) \asymp\left(\frac{V_{i}(t) / \lambda_{i}^{\kappa_{i}}(t)}{V_{j}(t) / \lambda_{j}^{\kappa_{j}}(t)} \frac{\left(\lambda_{3}{ }^{\prime}(t) \Lambda_{i}(t)\right)^{\kappa_{i}}}{\left(\lambda_{3}^{\prime}(t) \Lambda_{j}(t)\right)^{\kappa_{j}}}\right)^{1 /\left(\kappa_{i}-\kappa_{j}\right)} \asymp f(x)
$$

by Lemma 2, (9) and (51). Hence, (47) holds in all cases.

5. Concluding Remarks

If (38_{i}) does not hold, i.e., if $V_{i} / \lambda_{i}^{\kappa_{i}}$ is rather small, then the discussion after Theorem $L C$ indicates how to modify the definition of V_{3} so that Theorem 5 remains true. The essential point is to treat the integral in (35) correctly, if it occurs at all. Furthermore, an analysis of Theorem 2 shows that the integral in (28) may not be optimal if $\Lambda_{1} \sim \Lambda_{3}$ (due to the fact that Lemma 1 is not sharp in the corresponding case). So one should avoid $\Lambda_{v} \sim \Lambda_{3}$, unless $\Lambda_{v} \doteq \Lambda_{3}(\nu==1,2)$. If that is done our modified estimates remain minimal (assume (39j)). The corresponding "counterexamples" can be obtained by allowing larger f (near λ_{3}) or by considering for A functions which vanish near ∞ or behave like $V_{i} / \lambda_{i}^{\kappa_{i}}$.

If (39_{i}) does not hold, i.e., if V_{i} increases rather rapidly, then Theorem A_{1}, for instance, gives no longer a minimal bound. This follows from the following result. (In this case $\lambda_{3}=-=\lambda_{1}$.)

Theorem $A_{1}{ }^{*}$. Suppose that $V_{1}>\lambda_{1}{ }^{4}$ for every $\Delta>0$, and that

$$
0 \leqslant \kappa_{1}<\kappa_{3} \leqslant 1 .
$$

Then $A_{\lambda_{1}}^{\kappa_{1}} \leqslant V_{1}$ implies $A_{\lambda_{1}}^{\kappa_{3}} \leqslant V_{3}=\lambda_{1}^{\kappa_{3}}\left(V_{1} / \lambda_{1}^{\kappa_{1}}\right)\left(V_{1} / A_{1} V_{1}{ }^{\prime}\right)^{\kappa_{3}-\kappa_{1}}$. If $A_{1} \geqslant 1$, $V_{1}(x) \asymp V_{1}(x+1)$, then this is a minimal estimate.

In order to prove this, the integral $A_{\lambda_{1}}^{\kappa_{3}}$ is split into two parts:

$$
\begin{gathered}
A_{\lambda_{1}}^{\kappa_{3}}(x, \tilde{x})+\int_{\tilde{x}}^{x}\left(\lambda_{1}(x)-\lambda_{1}(t)\right)^{\kappa_{3}-1} \lambda_{1}^{\prime}(t) A(t) d t=I_{1}+I_{2}, \\
\lambda_{1}(\tilde{x})=\lambda_{1}(x)-\frac{V_{1}(x)}{V_{1}^{\prime}(x)} \lambda_{1}{ }^{\prime}(x) .
\end{gathered}
$$

Similarly as in the proof of Theorem 2 one shows that $I_{1}<V_{3}$ (by partial integration) and $I_{2} \leqslant V_{3}$ (by the mean value theorem for integrals). The minimality can be obtained from Lemma 8 . There are more changes in the other parts of Theorem 5 if (39_{i}) does not hold.

References

1. K. Chandrasekharan and S. Minakshisundaram, "Typical Means," Oxford Univ. Press, Oxford, 1952.
2. G. H. Hardy, "Orders of Infinity," No. 12, Cambridge Tracts in Mathematics, Cambridge, Univ. Press, Cambridge, 1910.
3. G. H. Hardy, Properties of logarithmic-exponential functions, Proc. London Math. Soc. 10 (1911), 54-90.
4. G. H. Hardy, The second theorem of consistency for summable series, Proc. London Math. Soc. 15 (1916), 72-88.
5. G. H. Hardy and M. Rifsz, "The General Theory of Dirichlets Series," Cambridge Univ. Press, Cambridge, 1915.
6. K. A. Hirst, On the second theorem of consistency in the theory of summation by typical means, Proc. London Math. Soc. 33 (1932), 353-366.
7. W. Jurkat and A. Peyerimhoff, Mittelwertsätze bei Matrix- und Integraltransformationen, Math. Z. 55 (1951/52), 92-108.
8. B. Kuttner, Note on "the second theorem of consistency" for Riesz summability, J. London Math. Soc. 26 (1951), 104-111.
9. M. Riesz, Sur un théorfme de la moyenne et ses applications, Acta Sci. Math. (Szeged) 1 (1922), 114-126.
10. H. Sakata, On convexity theorems for Riesz means, Tôhoku Math. 24 (1972), 301-307.
11. A. Zygmund, Sur la sommation des series par le procédé des moyennes typiques, Bull. Acad. Polon. A (1925), 265-287.

[^0]: * The research of the first author was supported in part by the National Science Foundation; the research of the third author was supported in part by D. Borwein's NRC (Canada) grant.
 ${ }^{1}$ Throughout this paper we will assume that order functions like V_{1}, V_{2}^{\prime} and the sequences λ_{i} are of logarithmic-exponential type, and we find it convenient to use the notations $<, \leqslant, \asymp, \approx, \sim$ (see [2]) which are natural in connection with such functions. In what follows, logarithmic-exponential functions will be called L-functions, and $f \in L$ means that f is an L-function for large values of the argument.

 2 This problem is of "O-type". We will also discuss the corresponding "o-problems", and problems of "mixed" type.
 ${ }^{3} \mathrm{We}$ do not exclude the case $\left(\lambda_{1}, \kappa_{1}\right)=\left(\lambda_{2}, \kappa_{2}\right)$.

[^1]: ${ }^{4}$ At this point we emphasize that in this paper functions $A_{\lambda}{ }^{\kappa}$ are considered only when λ satisfies (3).

[^2]: ${ }^{10}$ For $\kappa_{i}>0$ the second condition follows from the first.
 ${ }^{11}$ It is obvious, that $\left(17_{3}\right)$ with \geqslant in place of $>$ would be sufficient as long as we are concerned with " O-theorems." Condition (17_{i}) in its present form is required to obtain also " o-theorems."

[^3]: ${ }^{12}$ This theorem and its proof is a slight extension of well-known results; we indicate the proof to explain, e.g., the value of κ.

[^4]: ${ }^{15}$ Here A is a step function with steps at the integers, and $V_{1}(x+1) \leqslant c V_{1}(x)$ guarantees that V_{1} does not increase too much between two integers.

